Charge collection and non-ionizing radiation tolerance of CMOS Pixel Sensors using the 0.18 µm CMOS process

Ying ZHANG¹, Min FU², Liang ZHANG³, Hongbo ZHU¹

- 1. Institute of High Energy Physics, China
 - 2. Ocean University of China
 - 3. Shandong University, China

10th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors, 25-29 September 2015, Xi'an, China

Outline

- Introduction
- Charge collection simulation
- Prototype design
- Summary and outlook

Introduction — CEPC

- CEPC: Circular Electron Positron Collider, as a Higgs Factory, proposed by the Chinese high energy physics community in 2012.
- Stringent requirements on the vertex detector:
 - > Spatial resolution near the interaction point $\sigma_{sp} \sim 3 \, \mu \text{m} \rightarrow \text{high granularity (small pixel size)}$
 - Material budget ≤ 0.15% X₀/layer → monolithic pixel sensors (sensor + embedded electronics, thinned down to e.g. 50 μm) + air cooling (power dissipation ≤ 50 mW/cm²)
 - > Low detector occupancy below 0.5% → fast readout (~ 20 µs) + high granularity
 - Radiation tolerance (pre.): Total Ionizing dose ~1 MRad/y
 Non-ionization energy loss ~10¹² n_{eq}/cm²/y
- Sensor options: many technologies from ILC/CLIC could be options, i.e.
 CMOS Pixel Sensor (CPS), SOI, DEPFET, 3D, etc.
 But, power pulsing will NOT work at the CEPC → low power consumption

Introduction — CMOS Pixel Sensor

ALICE ITS Upgrade TDR 2013

- Integrated sensor and readout electronics on the same silicon bulk with "standard" CMOS process → low material budget, low power consumption, low cost ...
- Ultimate (Mimosa 28) installed for STAR
 PXL, technology for ALICE ITS Upgrade

Selected TowerJazz 0.18 μm CIS technology for R&D, featuring:

- Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area
- > Feature size of 0.18 μm and 6 metal layers: high-density and low power
- ➤ Thick (18 40 μ m) and high resistivity (≥1 kΩ•cm) epitaxial layer
- Thin gate oxide (< 4 nm): total ionizing dose</p>

Charge collection simulation

Motivation:

 Guide the diode geometry optimization and study radiation damage with different types of epitaxial layer

Simulated structure

- Building the 3-D device structure with Sentaurus-TACD tool
- Setting boundary: extending the auxiliary silicon surrounding the device volume to hundreds of micro-meters, which approximates the real device condition, replacing:
 - Reflective boundary condition (default) → overestimated signals.
 - Introducing four SiO₂ belts surrounding the detector volume and artificially high recombination velocity at the interface → unreliable result.

Simulated structure in this work

Charge collection simulation

Simulation with different parameters

- Hit position
- Diode geometry
- Thickness and resistivity of the epitaxial layer
- Radiation damage

Top-view of the simulated 5×5 cluster

Shooting MIP particle vertically at the central pixel and calculate the collected charge in neighboring pixels

pixel size: 16 μ m \times 16 μ m

Charge collection vs. hit position

The symmetrical pixel model makes the charge collection distribution symmetrical

spacing

N-well <

Charge collection vs. diode geometry

Design remarks on sensing diode area

- > should be small for the sake of low C, low noise, high gain because $V_{sig} = Q_{coll}/C$; $N \propto C$
- BUT not too small to preserve charge collection efficiency (important against NI irradiation)
- spacing (free of p- and n-wells) between the diode n-well and the footprint

SFB1/2/3 pixel have the same area of footprint, but different area of N-well, SFB3 > SFB2 > SFB1

The collected charge of seed pixel increase with N-well area, but SNR does NOT

Charge collection with competitive N-well

PMOS within the pixel introduces a competitive N-well to the charge collection N-well; using the deep P-well is expected to shield the competition

Charge collection with different epitaxial layers

- Pixel cluster with four different epitaxial layers
 - With the same pixel structure (SFB3)

Total charge increases with the thickness and resistivity of the epi-layer, so the charge sharing → figure out an optimal configuration

Ec

Radiation damage simulation

- Radiation damage can be simulated in Sentaurus Device by modelling behavior of trap levels directly
- Perugia P-type model
 - 2 Acceptor levels: Close to midgap
 - Leakage current, negative charge (Neff), trapping of free electrons
 - Donor level: Further from midgap

Trapping of free holes

Perugia radiation damage model for P-type* Energy η $\sigma_{\rm e}$ (cm²) σ_h (cm²) (cm⁻¹) Type (eV) Trap 2.0*10-14 1.613 2.0*10⁻¹⁵ Ec-0.42 VV Acceptor Ec-0.46 VVV 5.0*10-15 5.0*10-14 0.9 Acceptor Ec+0.36 CiOi 2.5*10⁻¹⁴ 2.5*10⁻¹⁵ Donor 0.9

*IEEE Trans. Nucl. Sci., vol. 53, pp. 2971–2976, 2006

Radiation damage simulation

Modified P-type model used in this work

Depletion voltage matches experiment

Modified P-type model⁺

Туре	Energy (eV)	Trap	$\sigma_{\rm e}$ (cm ²)	$\sigma_{\rm h}$ (cm ²)	η (cm ⁻¹)
Acceptor	Ec-0.42	VV	9.5*10 ⁻¹⁵	9.5*10 ⁻¹⁴	1.613
Acceptor	Ec-0.46	VVV	5.0*10 ⁻¹⁵	5.0*10 ⁻¹⁴	0.9
Donor	Ec+0.36	CiOi	3.23*10 ⁻¹³	3.23*10-14	0.9

Depletion voltage vs. fluence+

+David Pennicard, Radiation Damage in Sentaurus TCAD

Charge collection with radiation damage

4 irradiation fluence with 4 epitaxial layer

The performance requires further investigation

Prototype design

→ improves SNR → enhances detection efficiency

Design remarks:

- > includes 16 pixel configurations
 - diode area, footprint
 - pixel structure
 - transistor type

Source Follower (SF) pixels

Sector	Diode area	Footprint	Structure
SFB1	3 μm ²	20 μm ²	2T_nmos
SFB2	$4 \mu m^2$	$20 \ \mu m^2$	2T_nmos
SFB3	8 μm²	20 μm ²	2T_nmos
SFB4	3 μm ²	$15 \mu m^2$	2T_nmos
SFB5	4 μm²	15 μm ²	2T_nmos
SFB6	8 μm ²	15 μm ²	2T_nmos
SFB7	3 μm²	11 μm ²	2T_nmos
SFB8	$4 \mu m^2$	11 μm ²	2T_nmos
SFB9	8 μm²	11 μm ²	2T_nmos
SFB10	3 μm ²	$8 \mu m^2$	2T_nmos
SFB11	4 μm²	8 μm ²	2T_nmos
SFB12	8 μm ²	8 μm ²	2T_nmos
SFB13	8 μm²	20 μm ²	2T_pmos
SFB14	$4 \mu m^2$	8 μm ²	2T_pmos
SFB15	8 μm ²	20 μm ²	3T_nmos
SFB16	4 μm²	8 μm ²	3T_nmos

Prototype design (continued)

Design remarks:

- Influence of pixel pitch
 - pixel size affects resolution, CCE and radiation tolerance
 - innermost layer σ_{sp} ~ 3 μm → pitch ≤16 μm (binary readout)
 - including 2 pixel sizes: 16 μ m \times 16 μ m, 33 μ m \times 33 μ m
- Remarks on depletion voltage
 - Apply highest possible voltage on sensing diode
 - Apply reverse substrate bias
 - reduces capacitance
- Influence of thickness and resistivity of the epitaxial layer
 - Including four types of epi-layer:
 18 μm +1 kΩ·cm; 20 μm + 2 kΩ·cm; 25 μm + 2 kΩ·cm; 30 μm + 8 kΩ·cm

spatial resolution vs. pixel pitch

Resolution (microns)

Y. Voutsinsa, et al., Vertex Detectors 2012

Prototype design (continued)

Chip floor plan

- > Contains two matrices, Matrix-1 with $33 \times 33 \ \mu m^2$ pixels, Matrix-2 with $16 \times 16 \ \mu m^2$ pixels. Each matrix includes 16 SF (source follower) blocks for sensor optimization
- Each block has 16 parallel analog outputs (16 columns)
- Matrix-1 includes 8 blocks with in-pixel pre-amplifier

2.048 mm 6.144 mm I/O PADs I/O PADs SR 48Rows SR 96Rows Matrix-2 Matrix-1 24 blocks: 16 col. x 24 blocks: 16 I/O PADs col. x 96 rows 3.8 mm 48 rows Pitch: 16 µm Pitch: 33 µm SR 96Rows SR 48Rows MUX MUX MUX MUX I/O PADs I/O PADs 8.9 mm

33 µm pixel

16 μm pixel

Prototype design (continued)

SF pixel array steering:

- selecting one row, 16 columns read out in parallel
- each row needs one clock cycle, readout time of a frame is 24 μs @ 2MHz

Summary and outlook

- Performed preliminary TCAD simulation to understand the impacts on charge collection, including:
 - collection diode geometry
 - epitaxial layer
 - non-ionizing radiation damage
- First prototype designed with the TowerJazz 0.18 µm CIS technology;
 TCAD simulation results to be verified with future measurements
- To include more pixel geometries and ionizing radiation damage effects in simulation
- First submission expected mid of October, followed by detailed charge collection efficiency measurements

Thanks for your attention!

Charge collection with radiation damage

4 irradiation fluence with 4 epitaxial layer

