

September, 2015@HSTD10, China

A novel method for estimating the 3-D distribution of radioactive isotopes in the material

Yasuhiro IWAMOTO (Waseda Univ., JPN) J. Kataoka, A. Kishimoto, T. Nishiyama, T. Taya, H. Okochi, H. Ogata (Waseda Univ.) S. Yamamoto (Nagoya Univ.)

utline

■ Background

- Images acquired by a gamma camera
- General method for obtaining distribution of isotopes in depth direction

■ Methods for obtaining depth information

- 1st method ~Comparing spectra~ Application in a field in Fukushima
- 2nd method ~Comparing images~

■ Summary & Future work

©Asia Air Survey co., ltd.

Images do not include the distance information between radioactive isotopes and the camera

■ General methods for obtaining depth information of radioactive isotopes embedded in materials is to dig a hole.

1st concept: Comparing energy spectra

We defined energy ranges as Scattered gamma ray : 50 – 150 keV Direct gamma ray : 612 − 712 keV

- If the isotope exist near the surface of the material, direct gamma rays are superior to scattered gamma rays and vice versa
- Ratio of scattered to direct gamma rays includes depth information of the isotope

Experimental setup

Kataoka et al. 2014, NIM-A

Compton Camera (C.C.)

• C.C. uses for measuring **images and energy spectrum**

 \blacksquare Our C.C. is suited to survey environmental radiation because of **high angular resolution**

Experimental setup

\blacksquare Measurement condition

Distance from C.C. to source: **60 cm** Measuring time: **1 hour**

$137Cs$ is set at the bottom of receptacle

Material

- 1. Sand (per 1cm, from 0cm to 10cm)
- 2. Concrete (per 3cm, from 0cm to 15cm)
- 3. Water (per 1cm, from 0cm to 10cm)
- The size of the receptacle is 26cm × 38cm × 23cm

Depth vs. Ratio

 $= 0.87x + 4.57$ y_{sand} $= 0.94x + 4.96$ $y_{concrete}$ $= 0.64x + 4.69$ y_{water}

There are positive correlations between depth and ratio in each material

The plots were fitted with linear function

Next,

we attempt estimating depth of isotope using the fitting functions

Results of depth estimation

The estimated depths agree very well with the actual depths

Combining depth information with 2-D image

■ We obtain 3-D distribution of isotope in each material by uniting the 2-D image of direct gamma-rays with depth information of isotopes

Distribution of isotopes in Fukushima

- Distribution of ¹³⁷Cs in soil
	- β[cm]: buffer depth

$$
A(z) = A_0 \cdot \exp\left(-\frac{z}{\beta}\right)
$$

A: Radioactivity z: Depth

■ Histogram of buffer depth in Fukushima It surveyed with scraper plate

©Asia Air Survey co., ltd.

 Δ

Result of estimating β value

- The estimated β value is led from the fitting function Observed ratio: **3.16 (a.u.)** β value: **2.22±0.05 (cm)**
- **The estimated β value is in the range of observed β** distribution in Fukushima.

2nd concept: Comparing images

scatter increases with increasing depth

Results of the 2nd method

- Positive correlation between depth and spatial extent
- \blacksquare We are now developing various gamma cameras to visualize scattered gamma rays.

Pinhole Camera

 $\frac{1}{b}$ $\times d$

 \setminus^2

Pinhole camera's images

• Images of pinhole cameras (**Energy range: 0 – 400 keV**)

• No. of concrete plate vs. Variance

■ Summary & □Future work

We have reported methods to obtain depth information of isotopes using scattered gamma rays.

■ 1st method:

- Ratio of scattered to direct gamma rays has depth information of isotopes
- 3-D distribution of isotope is obtained by uniting a 2-D image and the depth information

■ 2nd method:

- Spatial extent of scattered gamma rays increases with increasing depth
- \Box We will confirm that it is possible to identify depth of isotope with the 2nd method in experiment.