First results of a Double-SOI pixel chip for x-ray imaging

Yunpeng LU¹, Qun OUYANG¹, Yasuo ARAI², Yi LIU¹, Zhigang WU¹, Yang ZHOU¹
1 Institute of High Energy Physics(IHEP), CHINA
2 High Energy Accelerator Research Organization(KEK), JAPAN

10th International “Hiroshima” Symposium on the Development and Application of Semiconductor Tracking Detectors, Xi’an, Sep. 2015
Outline

• Introduction
 – Merits of SOI technology
 – Specifications of target

• Description of the prototype chip
 – Double-SOI

• Test results
 – I-V curve of sensor
 – Suppression of back-gate effect
 – Analog waveform fidelity
 – Digital crosstalk
 – Threshold scan and noise
 – Laser test

• Summary and outlook
SOI technology offers great potential for X-ray imaging

- Full depleted substrate
 - Thickness up to 700µm, quantum efficiency
 - Back illuminated, thin entrance window
- High density electronics on-chip
 - 0.2µm full CMOS
 - 1 poly & 5 metal layers
- High density interconnect
 - Substrate contact size 0.3µm
 - Pitch down to 2.2µm

A schematic view of SOI structure
Proposed applications in material science

by Prof. Shunji KISHIMOTO (PF, KEK).

• New ferroelectric materials study requires measurement of the intensity of specific diffraction spots with
 – 30um square pixel;
 – 1k frame/s;
 – 14-bit counter each pixel;

• Determination of structure change of cell membrane
 – Grazing-incidence small-angle X-ray scattering (GISAXS);
 – Minimum area 20~30mm²;
 – 2.1~4.5keV, thin entrance widow < 1um;
• Specifications of target
 – 2~4keV
 – 1MHz counting rate
 – 1k frames/s
 – 14-bit counter
 – 30*30 um² pixel

Low noise, high speed, and fine pitch counting-type SOI chip, which has never been achieved so far!
CPIXTEG3b & Double-SOI

- The basic information of prototype chip CPIXTEG3b
 - A series of chips CPIXTEG1,2,3,3b
 - N-in-P sensor, 310um thick
 - Charge Amplification with constant feedback
 - Diode-biased inverter as the discriminator
 - 6-bit ripple counter & 6-bit register
 - Data chain organized in column
 - 50um * 50um pixel layout
 - 64*64 pixel array
 - Double-SOI shielding
• Double-SOI is a critical ingredient to the success of counting-type pixel.
 – Sensor and transistors in pixel are intimately close to each other;
 – A shielding layer needed to suppress the back-gate effect and crosstalk;
 – Sheet resistance of SOI2 dictated a careful study of shielding mechanism
 – Joint efforts by SOI researchers and Foundry.

Detailed study on SOI shielding was reported at
International Workshop on SOI Pixel Detector (SOIPIX 2015)
• Design optimization:
 – Small electrode (16um) to avoid overlapping with digital parts;
 – Dense SOI2 contacts to compensate the sheet resistance SOI2 layer
 – Local bypass capacitor on SOI2 grounding
 – P-stop ring isolating pixels

• Broke up pixels for test
 – Pixel(0,0), Pixel(0,31), Pixel(0,63) for crosstalk measurement;
 – Pixel(63,0), Pixel(63,31), Pixel(63,62) for evaluation of back-gate effect.
I-V curve of sensor

- Total leakage - the peripheral
- Data points agreed with $\sqrt{V_{bias}}$;
- 70nA/10mm2@room temp.
- Measurement failed beyond -80V due to a large peripheral;
- Multi-Guardring will be adopted in the next submission.
Evaluation of back-gate effect

- Current mirror measured with different bias applied to backplane;
 - Input transistor in peripheral area, output transistor in pixel;
 - No change discernable as the V_{bias} increased up to -75V;
 - Suppression of back-gate effect proved.

$I_{\text{ref}} = 2\mu A$

\[I_{\text{measured}} \]

Yunpeng LU, HSTD10, Xi'an, Sep. 2015
Analog waveform inspection

• Calibration signal equivalent to $1920e^-$
• Compared with a regular SOI chip (single SOI layer)
 – Oscillation prevented by the Double-SOI shielding.

![Analog waveform inspection diagram](image)

Yunpeng LU, HSTD10, Xi’an, Sep. 2015
Crosstalk from counter

- Compelling proof of shielding effectiveness
 - 5mV @ shaper output for DSOI chip (74 e\(^{-}\) referred to input charge), negligible when superimposed with noise (ENC ~ 113e\(^{-}\))
 - 95mV for regular SOI chip

<table>
<thead>
<tr>
<th>(peak to peak)</th>
<th>Double SOI</th>
<th>Regular SOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamp output</td>
<td>3.7mV</td>
<td>60mV</td>
</tr>
<tr>
<td>Shaper output</td>
<td>5mV</td>
<td>95mV</td>
</tr>
</tbody>
</table>

Yunpeng LU, HSTD10, Xi'an, Sep. 2015
Threshold scan and noise

- Preliminary!
- Threshold dispersion before tuning
 - RMS $97e^-@1760e^-$
- ENC noise
 - Average $106e^-$
- The whole pixel array is operational.
Laser test

- Infrared laser beam
 - 1064nm, simulating MIP tracks in silicon;
 - Sub-ns pulses duration and 1MHz repetition;
- Signal amplitude increased as a function of V_{bias}
 - Proportional to $\sqrt{V_{\text{bias}}}$;
- Counting rate decreased as the threshold lifting
 - S-curve fitting resulted in $153e^{-}$;
 - $1676e^{-}$ generated by single laser pulse
Summary and outlook

• SOI is an attractive technology to X-ray imaging
 – Fully depleted, high density electronics and interconnection
• Fine pitch, low noise and high speed counting-type SOI pixel is targeted on
 – for low energy X-ray diffraction and scattering experiments.
• The prototype chip CPIXTEG3b for the first time demonstrated that the counting-type SOI pixel is practical.
 – Crosstalk issue solved.

• X-ray test is planned in Oct. at KEK P.F.
• Next submission in Feb. 2016
 – Optimization for compact layout and low noise;
Acknowledgements

Shunji Kishimoto, Ryo Hashimoto (IMSS, KEK)
Toshinobu Miyoshi, Ryutaro Nishimura (IPNS, KEK)
Masao Okihara, Naoya Kuriyama, Noriyuki Miura, Hiroki Kasai
(LAPIS)
Tosifumi Imamura (A-R-Tec)

This work is supported by National Natural Science Foundation
of China.