

P-stop isolation study of irradiated n-in-p type silicon strip sensors for harsh radiation environment

Martin Printz on behalf of the CMS Tracker Collaboration

HSTD-10 Xi'an China, Sept. 25th-29th, 2015

Institut für Experimentelle Kernphysik, KIT Germany

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outline

Interstrip resistance before and after irradiation

- Charge collection studies
- •Electric field strength

The current CMS Tracker

Fig.: Schematic of a strip detector

- Dimension: 5.8 m x 2.5 m
- ~210 m² of silicon detectors (pixel & strips)
- Barrel and Endcaps cover the range of $\eta = -\ln \tan \left(\frac{\Phi}{2}\right)$ up to $|\eta| < 2.5$
- P-in-n and n-in-n technology
- Position measurement with up to 10 μm precision

Will be fully exchanged during the LS3 ~2023

- New tracker layout
- Outer Tracker will be equipped with n-in-p type technology

3

CMS Tracker after Phase II Upgrade

10th International Hiroshima Symposium Xi'an China, 09/25-10/01, 2015

CMS Tracker after Phase II Upgrade

 Sensors for 2S and PS modules will be of n-in-p type technology

- Expected fluence after 3000 fb⁻¹ during the Phase II run for the Outer Tracker : 1x10¹⁵ n_{eq}cm⁻²
 - Following results cover the fluence up to 2x10¹⁵ n_{eq}cm⁻²

10th International Hiroshima Symposium Xi'an China, 09/25-10/01, 2015

N-in-p technology

Different p+ process characteristics

- Prevent electron accumulation by p+ implantation between adjacent strips
- Isolation & strength of electric fields depend on p+
 - doping concentration
 - doping energy
 - doping depth

Different p-stop pattern:

Distance between strip and p-stop

R&D studies:

- Neutrons + 23 MeV protons up to Φ =2x10¹⁵ 1MeV n_{eq}/cm²
- (X-ray studies: surface damage)
- T-CAD simulation

10th International Hiroshima Symposium Xi'an China, 09/25-10/01, 2015

AC pad

Institut für Experimentelle Kernphysik (IEKP), KIT

Interstrip resistance R_{int}

- N-in-p type sensor performance dependent on isolation characteristics
- Isolation technique affects noise and breakdown behaviour -> known from measurements and T-CAD studies
- Task: find the most suitable p+ isolation doping concentration and depth
 - lower maximum electric fields -> high breakdown voltage
 - ensure sufficient R_{int} -> low charge sharing despite of fluence

• Approach: sensors with 5 different initial doping concentrations and depths (variants V)

Variant#1	V #2	V #3	V #4
 p-stop conc. ~ 1-5x10¹⁶ cm⁻³ doping depth ~2.2 μm 	 p-stop conc. ~ 9x10¹⁶ cm⁻³ doping depth ~2.7 μm 	 p-stop conc. << 1x10¹⁶ cm⁻³ doping depth <2.0um 	 p-stop conc. ~1x10¹⁶ cm⁻³ p-stop conc. ~1x10¹⁷ cm⁻³ doping depth ~1.5 µm doping depth ~2.5 µm

R&D studies: irradiation with protons, neutrons and x-rays Electrical qualification, Sr90 measurements, telescope runs

Specifications for the productions

Substrate material

- Wafer size:
- 6" & 4" Wafertype: p-type FZ
- <100> Crystal Orientation:
- Resistivity: $4 k\Omega cm - 10 k\Omega cm$
- Oxygen concentration: < 2x10¹⁶ cm⁻³
- Physical thickness: 200 μ m – 300 μ m
- Strip pitch: 90 µm
- Strip width: 25 µm

Process details:

- AC coupled with polysilicon bias or punch through and p-stop strip isolation
- Definition of doping profiles
 - Peak doping concentration is defined as the maximum concentration slightly below the bulk surface
 - Full depth is defined as the depth below the bulk surface where the doping concentration has reached the bulk concentration

Institut für Experimentelle Kernphysik (IEKP), KIT

R_{int} - measurement

- probestation for electrical qualification of sensors
- R_{int} measurement
 - ramp to +1V between two adjacent strips (DC)
 - measure 1V/(I_{max}-I_{min})
 - measurement of lower limit of R_{int}

Results from the last huge R&D campaign

- R_{int} drops with fluence from several G Ω cm to some 100M Ω cm
- In this specific campaign (with no variations of p-stop conc.):
 - No dependence on technology (n-in-p & p-in-n) and annealing
- Question: is this valid for p+ isolation technique in general?

10th International Hiroshima Symposium Xi'an China, 09/25-10/01, 2015

Institut für Experimentelle Kernphysik (IEKP), KIT

Results on R_{int} measurements

- R_{int} drops after irradiation by about three orders of magnitude but is still high enough for good strip isolation (R_{int} > 20*R_{poly})
- <<1x10¹⁶cm⁻³ sensors show no strip isolation before irradiation -> P-stop conc. too low
 - After proton irradiation R_{int} increases

Sr90 measurement with ALiBaVa setup

- CC is comparable for all vendors
- <1x10¹⁶ cm⁻³ sensors can be measured after proton irrad. due to increased R_{int} (positive space charge effect)
- 9x10¹⁶ cm⁻³ and 1x10¹⁷ cm⁻³ sensors show random ghost hits (!) after neutron, proton or mixed irradiation
 - T-CAD studies show that additional oxide charge lowers max. electric fields in n-in-p type sensors
- 1x10¹⁶ cm⁻³ sensors and 1.5 μ m, 2.2 μ m and 2.5 μ m show no critical behaviour

Noise contribution

- Non-gaussian noise/ Random Ghost Hits RGH mainly on p-in-n type sensors irradiated with charged hadrons
 - Random ghost hits (RGH): number of hits per strip and event above 5σ of gaussian fit divided by #strips and #events in a pedestal run without source
 - A number above 1% was defined as bad, since this would generate 1% occupancy with fakes
 - fake hits equally distributed over all strips
 - large RGH phase space for p-in-n type
 - P-type sensors with moderate p-stop conc. (~1x10¹⁶cm⁻³) almost not affected

Fig.: Noise histogram from pedestal runs; left good, right non-gaussian!

Fig: RGH in n-in-p type

Fig: RGH in p-in-n type

Institut für Experimentelle Kernphysik (IEKP), KIT

P-stop concentration

P-stop concentration singnifincantly influences the noise contribution

P-stop conc.= 9x10¹⁶ cm⁻³

Fig.: pedestal run with random trigger

P-stop conc.= 1x10¹⁶ cm⁻³

Martin Printz Institut für Experimentelle Kernphysik (IEKP), KIT

10th International Hiroshima Symposium Xi'an China, 09/25-10/01, 2015

P-stop conc. \geq 9x10¹⁶ cm⁻³

- High p-stop concentration ~9x10¹⁶ cm⁻³ and ~1x10¹⁷ cm⁻³
 - strip isolation is given even after very high fluence
 - but more and more non-gaussian noise appears with fluence, especially after neutron irradiation

- RGH occur just for sensors with high p-stop conc. (V2&V4)
- locally very high electric fields (>30kV/cm) near p-stop
- P-stop conc. >9x10¹⁶ cm⁻³ seems to be too high
 - Good R_{int} before and after irradiation
 - High random ghost hit rate (>1% after 4x10¹⁴ n_{eq}cm⁻² neutrons)

T-CAD studies on electric fields: p-stop concentration

- Scan of the electric field with T-CAD Sentaurus in dependence of the Fluence and p-stop doping concentration
- Two-defect proton model (Eber, Phd 2013) used
- (Sensor parameter for simulation: bulk doping 1x10¹² cm⁻³, n+ implant 1x10¹⁹ cm⁻³ (gaussian) and 1.5 μm deep, backside doping 5x10¹⁸ cm⁻³ (erf), strip pitch 90 μm, strip width 25 μm, MetalOverhang 6 μm, N_{Ox}=1x10¹² cm⁻², P-stop strip disctance PS=25 μm)
- Developed model on data from measurements predicts high electric field strength and low breakdown voltage with increasing p-stop doping concentration

T-CAD studies on electric fields: p-stop to strip distance

P-stop conc. = 9x10¹⁶ cm⁻³, V = -600 V, T = -20 °C

10th International Hiroshima Symposium Xi'an China, 09/25-10/01, 2015

T-CAD studies on electric fields: implantation depths

- Two-defect model used
- Extracted maximum electric field strength from the simulation
- Scanned the doping depths of n+ and p+ implants
 - Electric field strength is not dependent on the depth of n+ implants
 - P-stop depth significantly affects the electric field strength if concentration high

P-stop atoll pattern

Fig.: from GDS file

Electrical qualification

no difference before and after irradiation

Fig.: T-CAD simulation of electric field

Parameter	Donor	Acceptor
Energy	E _V + 0.48eV	E _C - 0.525eV
Concentration (cm ⁻³)	5.598 * F - 0.959e14	1.189 * F + 0.645e14
σ(e)	1.0e-14cm ²	1.0e-14cm ²
σ(h)	1.0e-14cm ²	1.0e-14cm ²

- sensors have been irradiated with 23MeV p and 1MeV n up to Φ=1.6x10¹⁵ 1MeV n_{eq}/cm²
- Sr90 measurements with fast readout system (ALiBaVa)
- CCE measurements of irradiated samples reproduce predictions from simulations
- no significant difference of CCE in ALiBaVa depending on p-stop atoll pattern

Fig.: Cosmic telescope at KIT

- (1) fridge
- (2) DAQ PC
- (4) LV Supply
- (5) monitoring

19

Fig.: differentail flux of cosmic myons at sea level

16 18 20

Martin Printz

p [GeV/c]

(3) SlowControl PC

Results

PS16 cluster signal unirr

PS16 cluster signal 1e14p

PS25 cluster signal unirr

PS25 cluster signal 1e14p

- <u>Unit cell:</u>
 - x=0.5=center of strip
 - x=0&x=1 center of two adjacent strips
- Each vertical bin contains a charge distribution, which has been fitted with a convoluted landau and Gaussian function
- black line represents the most probable value of the fit in each bin

- No significant difference in signal depending on the p-stop atoll pattern
- Validates the Sr90 measurements
- (More statistics during next beam test)

Sum up

- CMS tracker collaboration studies n-in-p type sensors with p-stops in detail
 - Tools: T-CAD, Sr90 measurements, telescope, beam test
 - P-spray as alternative will be investigated in more detail now with new batches
- phase space for initial p-stop doping concentration can be reduced step by step
 - $<1x10^{16}$ cm⁻³ too low
 - 9x10¹⁶ cm⁻³ seems to be too high
 - 1×10^{16} cm⁻³ with a doping depth of around 2 µm seems robust up to $\Phi = 2 \times 10^{15}$ n_{eq}cm⁻²
 - to be confirmed with 6 new batches from 3 different vendors
- Simulation models have been developed and "confirmed" by measurements of new sensors
- p-stop atoll pattern: p-stop to strip distance can be varied between 15 μm and 25 μm without changes in performance up to Φ=2x10¹⁵ n_{eq}cm⁻²
 - Telescope measurements so far up to $\Phi = 1 \times 10^{14} n_{eq} \text{ cm}^{-2}$

backup

odel	Parameter	Donor	Acceptor
	Energy (eV)	E _V + 0.48	$E_{C} - 0.525$
E C	Concentration (cm ⁻³)	1.395 cm ⁻¹ x F	1.55 cm ⁻¹ x F
Itrol	σ(e) (cm ²)	1.2 x 10 ⁻¹⁴	1.2 x 10 ⁻¹⁴
ner	σ(h) (cm²)	1.2 x 10 ⁻¹⁴	1.2 x 10 ⁻¹⁴

5	Parameter	Donor	Acceptor
5	Energy (eV)	E _V + 0.48	E _C – 0.525
	Concentration (cm ⁻³)	5.598 cm ⁻¹ x F – 3.949*10 ¹⁴	1.189 cm ⁻¹ x F − 6.454*10 ¹³
2	σ(e) (cm ²)	1.0 x 10 ⁻¹⁴	1.0 x 10 ⁻¹⁴
2	σ(h) (cm²)	1.0 x 10 ⁻¹⁴	1.0 x 10 ⁻¹⁴

- Synopsys Sentaurus TCAD sw package
- developed effective 2-trap model (R. Eber, Phd Thesis, IEKP-KA/2013-27, KIT) in order to simulate irradiated silicon sensors
- tables show models for neutron and proton irradiation
- e developed on data from HPK silicon sensor for the Phasell Outer Tracker campaign
- message:
 - models tuned in order to reproduce data from lab measurements (full depletion voltage, leakage current, charge collection and TCT)
 - can be used to investigate new silicon sensor characteristics and CCE

proton model

Synopsys Sentaurus T-CAD simulation of silicon strip sensors

- electric field strength for both polarities
- pitch and w/p are chosen corresponding to the Tracker Phase II Upgrade baseline with 2S modules
- simulated at V_{bias}=-1000V and T=-20°C
- cut through electric field 1.3μm below silicon/SiO₂ interface (p-n junction of bulk and strip implant)
- 2-trap proton model applied: F=1x10¹⁵ n_{eq}/cm²
- message:
 - ionizing radiation introduces positive oxide charge Q_{Ox} (saturation of Q_{Ox} expected to be ~1e12cm⁻²)
 - increasing Q_{Ox} decreases the electric field strength in n-in-p devices → less prone to micro-discharges/break through

Electric field strength: F vs. N_{Ox}

- scanned fluence from 1e14 to 1.5e15 n_{eq}/cm² (20 cm)
 - two-defect proton model (Phd Robert)
- scanned oxide charge from 5e11 to 1e12 cm⁻² (XFEL study, Zhang)
 - surface defects still not implemented sufficiently

how does surface damage influence overall performance after high radiation dosis?

Backup

10th International Hiroshima Symposium Xi'an China, 09/25-10/01, 2015

Temperature Dependence of RGHs

- Fake hit rate increases with temperature following current!
- The increase of fake hit rate is typically linked to an increase in current.
 But an increase in current does not necessarily lead to fake hits.