

Alignment and analysis news Philipp Roloff (DESY)

- Noise measurements
- Alignment:
 - time dependence
 - CERN data
- Sensor resolution

JRA1 Meeting - Université de Genève 22/05/2008 - Software Session

Conversion: ADC counts to electons

- Side product of tests for new mechanics
- Dependent on temperature

Seed pixel spectrum of Fe55 source at 4°C

Noise of MimoTEL

Noise of MimoTEL #20

Errors given by widths of noise distributions.

Alignment: time dependence

- New processor EUTelMille allows to use full tracks for the alignment.
- For technical details see my presentation during the software meeting on 31/01/2008.
- Now in CVS.

• Now spilt the datasets in smaller parts and look at the time dependence of the constants.

22/05/2008

Shifts in X and Y (6 GeV)

22/05/2008

- No problems visible.
- Telescope stable for about 28 hours.
- Similar for 3 GeV data
 (→ backup)

22/05/2008

Alignment of CERN data

- For the DESY samples only events with one track per event were used.
- This is not possible for CERN data any more!
- **Procedure:** Repeat fit 10 times and:
 - Decrease cut on χ^2 for later iterations
 - Downweighting of outliers

It works!

Input track candidates.

22/05/2008

Aligned telescope.

22/05/2008

Rotations (CERN)

22/05/2008

1

1.5

2

2.5

Bin (corresponds to about 2000 events)

3

Sensor resolution studies

- Use hits from existing files:
 - Seed SNR > 5 (> 6 for first plane)
 - 3x3 cluster SNR > 4
 - maximal 100 seeds
 - η -correction
- Alignment from MILLEPEDE II
- Linear tracks (EUTelMultiLineFit) fitted:
 - $-\chi^2(x) < 20, \chi^2(y) < 20$
 - distance < 250 μ m
 - (< 850 between sensor 2 and 3 in CERN setup)

DESY 6 GeV: example plots

Track positions in sensor 2

Charge in seed pixels and 3x3 clusters

22/05/2008

DESY 3 GeV: example plots

Track positions in sensor 1

Number of tracks fitted per event

Charge in seed pixels and 3x3 clusters

22/05/2008

Sensor resolution

- In DUT mode: $\sigma^{2} = \sigma^{2}_{DUT} + \sigma^{2}_{TEL} + \sigma^{2}_{MS}$ $= \sigma^{2}_{MimoTEL} + k \cdot \sigma^{2}_{MimoTEL} + \sigma^{2}_{MS}$ $= (1 + k) \sigma^{2}_{MimoTEL} + \sigma^{2}_{MS}$
- Geometrical factor of telescope: $k = \sum z_i^2 / (n \cdot \sum z_i^2 - (\sum z_i)^2)$ for DUT at z = 0
- Remove σ^2_{MS} by extrapolation to infinite energy: 1 / E² \rightarrow 0

Example: Sensor 2 as DUT

Extrapolation: $E^{-2} \rightarrow 0$

22/05/2008

Sensor as DUT	σ(MimoTEL) – X	σ(MimoTEL) – Y
0	4.0 ± 1.2 μm	4.1 ± 1.3 μm
1	3.1 ± 0.6 μm	3.2 ± 0.6 μm
2	3.5 ± 0.8 μm	3.7 ± 0.9 μm
3	3.2 ± 0.6 μm	3.3 ± 0.7 μm
4	4.0 ± 1.3 μm	4.2 ± 1.3 μm

- All values consistent with 3.0 μm (within the large errors)
- Uncertainty of beam energy: 3%

Sensor 2 as DUT: $3\% \rightarrow 5\%$: $\sigma(MimoTEL,x) = 3.5 \pm 1.1\mu m, \sigma(MimoTEL,y) = 3.7 \pm 1.1\mu m$ $3\% \rightarrow 0\%$: $\sigma(MimoTEL,x) = 3.5 \pm 0.4\mu m, \sigma(MimoTEL,y) = 3.7 \pm 0.4\mu m$

Sensor resolution from CERN data

- 180 GeV pions: $\sigma^2_{_{\rm MS}}$ was neglected

Sensor 2 used as DUT

"Little peak" in X:

- One pitch away from "main peak"
- Only in DUT mode
- Also without
 η-correction
- Also in other planes

22/05/2008

Sensor as DUT	σ(MimoTEL) – X	σ(MimoTEL) – Y
0	2.94 ± 0.03 μm	3.11 ± 0.03 μm
1	2.68 ± 0.03 μm	2.83 ± 0.03 μm
2	2.91 ± 0.03 μm	3.00 ± 0.03 μm
3	2.85 ± 0.03 μm	2.93 ± 0.03 μm
4	2.94 ± 0.03 μm	3.03 ± 0.03 μm

All values close to 3.0 μm

- Alignment constants are stable in time
- Millepede II works with CERN data
- Sensor resolution consistent with 3.0 μm

Shifts in X and Y (3 GeV)

22/05/2008

Rotations (3 GeV)

22/05/2008