

Main Parameters of MIMOSA-22+

Input to discussion

Marc Winter (IPHC-Strasbourg)

on behalf of IPHC and IRFU/Saclay

- Introductory remarks (reminder)
- Limitations of present design
- Possible improvements :
 - * dimensions * data throughput * SNR \rightarrow det.eff. * radiation tolerance
- Consequences on design finalisation and chip delivery
- Summary

CMOS BT

Autumn 2008 : fabrication of MIMOSA-22+ = Final Sensor

- * MIMOSA-22 (binary outputs) complemented with \emptyset (SUZE-01)
- * 1 or 2 sub-arrays (best pixel architectures of MIMOSA-22) ?
- * Active surface : 1088 columns of 544/576 pixels (20.0 x 10/10.5 mm²)
- * Pixel pitch : 18.4 $\mu m \rightarrow \sim$ 0.6 million pixels $\hookrightarrow \sigma_{sp} \sim$ 3.5 μm
- st Integration time \sim 100 μs \rightarrowtail \sim 10 4 frames / second
- * Ø based on 17 groups of 64 columns and assuming \leq 9 "clusters" per row
- st Chip dimensions : \sim 20 x 12 mm 2
- * Data throughput: 1 output at 100 Mbits/s
- st Engineering run : 6 wafers of \sim 50 chips (\sim 120 keuros)

 $\triangleright \triangleright \triangleright \triangleright$ Question : are these reasons to revisit these parameters ?

1	2
1	9
	g
<u> </u>	2
	sub
	•
	e dha
	SCI
NEWO1	
8	sob a
	g
NDMORY .	40.0
	8 d08
CH# 9	sub
	•
_	a dris
VENORY	sup
	6
MBM	ant o
3	
	-
	SAD U
	a dos
∃	sub a
	8
	dþ. é

CMOS BT

Dimensions:

- reticle dimensions have somme flexibility : 22 x 22 mm² \rightarrow 26 x 17 mm²

SNR :

- ← reflects sensing diode parameters (e.g. dimensions) and in-pixel amplification
- ightarrow degrades after exposure to intense radiation \rightarrow concern ???
- ightarrow not yet fully optimised : SNR \sim 18–19 expected
 - \Rightarrow worth increasing safety margin w.r.t. "critical" regime (SNR \leq 12–13)
- *← Room for optimisation already investigated*

What is preventing from improving these parameters before submitting MIMOSA-22+?

- ightarrow Time line imposed by EU ?
- ightarrow Pressure from telescope users ? ightarrow use demonstrator meanwhile

 $\triangleright \triangleright \triangleright$ Why considering extending EUDET by one year ?

Realistic goal: extend sensor dimension beyond ILC VD ladder width (20 mm?)

Proposed dimensions: 1280 columns of 576 pixels \rightarrow 23.5 x 10.5 mm² (740,000 pixels)

Consequences:

- * number of groups of 64 columns moves from 17 to 20 \Rightarrow adapt the zero suppression design
- * 25 % increase of number of pixels \Rightarrow Nb(pixels) with noise fluctuation above discri. threshold \nearrow
- * 25 % increase of Nb (hit pixels)

 \Rightarrow Increase zero suppression and data throughput capacity

Practical aspects:

- * no additional prototyping needed \Rightarrow no budget overhead
- * extend zero suppression capacity to 10 "clusters" per row
- * 2 outputs at 75 Mbits/s per chip \Rightarrow consequence for DAQ boards ?
- * design effort costs a minimum of 2 months delay in submission date \rightarrow early 2009.

Motivations :

- * improve CVC gain : reduce sensing diode dimensions & optimise amplification
- * reduce vulnerability to ionising radiation \rightarrow optimise T gate voltage to reduce I_{leak} effects

Practical aspects:

- * send prototype for fabrication by end of June or July (15–20 keuros)
- * complete prototype tests by end of Octobre
 - \Rightarrow costs 1 month delay in submission date ightarrow end of Novembre 2008

(in parallel with design modifications for surface extension)

Use of telescope at DESY: few $10^3 \text{ e}^-/\text{s}$

* 10⁴ frames/s \Rightarrow < 1 hit/frame in average

* intensive use (2 · 10⁷ s/yr) ⇒ up to 10¹¹ e⁻ (few GeV)/yr \hookrightarrow yearly radiation dose \sim 3.5 kRad & 10¹⁰ n_{eq}/cm²

Use of telescope (copies ?) at hadron colliders: $10^4 - 10^5 \ \pi, \mu, ...$ /s

* 10⁴ frames/s ⇒ up to several tens of hits/frame in average * intensive use (1.10⁷ s/yr) ⇒ up to several 10¹² π, μ, .../yr \hookrightarrow yearly radiation dose: O(100 kRad) & O(10¹²) n_{eq}/cm²

⇒ Should the pixel design be tolerant to (ionising) radiation ? \hookrightarrow cost in noise before irradiation : 1 e⁻ENC \mapsto SNR ? (beam tests)

 \diamond Special care for cooling ?

SUMMARY

MIMOSA-22+ benefits from delaying the fabrication to early 2009:

- ← extend the dimensions: 23.5 mm width, surface + 25 %
- *← improve* SNR *and tolerance to ionising radiation*

Cost overhead (15–20 keuros) affordable by proponents

Decision deadlines:

- *← pixel architecture : June Septembre*

(connexion to DevDet proposal evolution ?)