

Movable TAXN Roadmap

HL-LHC PLC Meeting

thanks to : R. deMaria, S. Redaelli, F. Cerutti, L. Esposito, P. Fessia, H. Burkhardt for input

....and stealing their slides!

October 14, 2014

I. Efthymiopoulos – CERN

E ALL LAST O LA DENT A CONTRACTOR AND A THE AND A THE AST O AND O AND A THE AST OF A THE AST OF A THE AST OF A

TAXN Design Considerations

TAN/TAXN functionality:

- neutral beam absorber that should capture the outgoing flux of neutral particles produced at the high-luminosity regions IP1, IP5
- protect the downstream twin aperture magnet (D2 +) from quenching
- localise the induced activation to this massive absorber

- TAN specialties

- transition from single to double piping
 - variable aperture tubes
- slots for
 - beam instrumentation (Luminosity monitors)
 - LHCf experiment
- air cooled

- TAXN design

- transition from single to double piping
 - constant aperture tubes
- no design constraints from BI, Experiments (tbc)
- water cooled device (1-2 kW)
- designed to be installed/ disassembled in-situ in presence of other equipment

Movable TAXN

TAN – Present design criteria Round optics: H crossing

- HL-LHC layout compatible with 3 collision optics for IR1 and IR5:
 - $\beta^*=15/15$ cm, Round HV crossing,
 - $\beta^* = 7.5/30$ cm, Flat V crossing,
 - $\beta^*=30/7.5$ cm, Flat H crossing,
- Energy deposition critical for H crossing, TAN aperture determined by Flat optics.
- If TAN H apertures change, protection would be optimized for all optics.

Beam 1, Beam 2, Neutral Debris (400 µrad cone)

Flat optics: V crossing

High Luminosity 0.15

0.10

0.05

-0.05

-0.10

-0.15

120

Courtesy : R. De Maria *et al.*

Courtesy : R. De Maria et al.

5

TAN – Movable option

- The TAN could be split in two parts:
 - A fixed TAN to shield all radiation for vertical crossing and most of radiation for horizontal (e.g. closer to the IP by 4 m, larger aperture ~82mm, smaller separation ~140 mm).
 - A second TAN with movable jaws in the H plane (+- 10 mm) only that protects only what is left by the first TAN (no material needed in the central part) and adjust at every change of optics (e.g. during a technical stop, if not every year).
 - The movable TAN would need massive jaws (no like a TCL, it is not required to be moved with beam like a TCDQ).

Courtesy : L. Esposito, F. Cerutti

TAXN: energy deposition

Total power = 1150 W @ $5 \times \pounds$ TAXN longitudinal profile 200Peak dose = 4.5 GGy @ 3000 fb⁻¹ peak dose [GGy / 3000 fb⁻¹] 150 TAXN at longitudinal peak 10^{3} 12 3 norizontal crossing 100 seak power [mW/cm] 10^{2} 6 Y [cm] 10¹ 0 50 1 10⁰ -6 0 126 129 128 130 127Distance from IP [m] 10⁻¹ -12 -12 12 TAXN peak fluence longitudinal profile -6 0 6 10²¹ X [cm] photons 🕨 10²⁰ e+&e-TAXN at longitudinal peak neutrons ---- 10^{3} 12 $[/cm^{2}]$ after 3000 H^{-1} $10^{10} H^{-1}$ 10^{17} 10^{17} charged hadrons protons crossing 10² r [mW/cm³ 6 Y [cm] 10^{1} The TAXN will be designed -6 10¹⁵ for the ULTIMATE HL-LHC 1014 -12 126 128 129 130 127 parameters -12 0 6 Distance from IP [m] -6 X [cm] Joint WP2-WP5 meeting & ColUSM #46, 3 October 2014

7+7 TeV proton collisions, 295 unad half-crossing angle

jaws at 10σ

(shown only the tungsten block)

12

14

11

x [cm]

Debris after the TAN LHC HL-LHC debris distribution at TCL.4R5 entrance debris distribution at TAN 4R5 exit (truncated cone) <u>y</u>

For a more details, refer to L.S. Esposito at 13th HiLumi WP2 Task Leader Meeting, 13 August 2013 L.S. Esposito, HL-LHC Matching Section masks, 16 May 2014

Same number of events

12

11

13

x [cm]

7+7 TeV proton collisions, 142.5 µrad horizontal half-crossing ang 10

Courtesy : L. Esposito, F. Cerutti

Energy deposition on the TCL and TCLMA

Joint WP2-WP5 meeting & ColUSM #48, 3 October 2014

y [cm]

► A fixed TAXN of similar design as the present TAXN is required

- sufficiently large/long absorber to protect the neutral debris and the vertical x-ing
- adequate aperture in the H-plane
 - present simulation studies: 40mm Ø, 3.5m long separated pipes, 149/159 mm IP/non-IP beam separation
 - positioned 4m closer towards IP
- Designing a movable jaw TAXN would be rather similar effort as that of a special collimator
- Couple the fixed jaw TAXN to a downstream collimator (re-designed/re-infoced TCL) is a preferred solution
 - collimator design proven to work !
 - such a special collimator could remove some of the layout issues in the TAXN-D2 region
 - move jaws ±10 mm to follow beam optics, larger (wider) jaws

- Update of simulation (E_dep, coverage) studies by the Annual Meeting
- Define set of parameter designs for the TAXN
 - apertures, length, use of W inserts, slots for instrumentation/experiments

Timeline for the TAXN baseline scenario - exchange from TAN to TAXN during LS3.													
Phase	2014	2015	2016	2017	2018	0107	2019	2020	2021	2022	2023	2024	2025
LS stops						L	S2					LS3	
Freeze LSS layout - all IPs/experiments (latest)													
Requirements definition													
Functional specification													
Engineering specification													
Acquisition process													
Fabrication, assembly and verification													
Installation, commissioning													
											l and und	ato Cantomb	- 16

• TAXN design must be fixed by middle of 2018

TAXN @ IP8/LHCb

- Layout reservation for a TAXN installation for LHCb/IP8
 - https://edms.cern.ch/document/1331944/1
- Design work should start soon:
 - Determine angular coverage and aperture needs (WP2)
 - TAXN like or absorber between beam pipes
 - Energy deposition, engineering and integration....

2. Point 8 Right (8R) general view. Dimension future TAN

Should be installed during LS2!

11

TCS

Point 8 Left (8L) general view. Dimension future TAN

D2