7th Symposium on Large TPCs for Low-Energy Rare Event Detection Paris, France, December 2014

The MicroBooNE experiment at FNAL

Leonidas N. Kalousis (Virginia Tech) for the MicroBooNE collaboration

MicroBooNE

MicroBooNE will be the largest *Liquid Argon Time Projection Chamber* (LArTPC) operating in the US.

- ... and the second largest LArTPC in the world

- Main motivation for designing and building MicroBooNE is the investigation of the low-energy electromagnetic excess seen by MiniBooNE.
- Additionally MicroBooNE will be able to:
 - Perform cross-section measurements on argon
 - Study the background relevant to proton decay in LArTPCs
 - Detect neutrinos from supernova explosions
 - Further advance the LArTPC technology
- And contribute to other, more exotic, searches ...

Experimental layout

• MicroBooNE (just like MiniBooNE) is now installed along the Booster Neutrino Beam (BNB) at Fermilab (FNAL).

- Placed in the Liquid Argon Test Facility (LArTF) at a distance of ~470 m from the beryllium target.
- It is expected to start data taking in 2015 and run for 2-3 years in the neutrino mode accumulating ~ 6.6 10²⁰ POT.

The MiniBooNE puzzle

Phys. Rev. Lett. 110 (2013) 161801

Neutrino mode:

• Excess: 162.0 ± 47.8 (3.4σ)

Antineutrino mode:

• Excess: 78.4 ± 28.5 (2.8σ)

Combined:

- Excess: 240.3 ± 34.5 ± 53.6
- 3.8 statistical significance

Liquid Argon Time Projection Chambers

Picture from M. Soderberg

Incredible step in spatial resolution and calorimetry

Why argon ?

- Ionization charges drifted through macroscopic distances
- High scintillation yield
- Argon is rather cheap and abundant in nature
- Dense detectors can be made
- Ionization electrons detected by a series of wire planes
 - Particle identification and calorimetry
- Scintillation light collected from a photomultiplier system
 - Trigger and t₀ reconstruction

US based effort

Slide from A. Szelc, Neutrino 2014

The MicroBooNE LArTPC

Time Projection Chamber:

- Three planes of wires at 3 mm pitch
 - One collection plane at 0° from vertical
 - Two inductions planes at ±60°
- 8256 channels totally
- 1.6 ms drift time (2.5 m drift length)

Optical system:

- 32 cryogenic photomultipliers (PMT)
- 4 light guide prototypes
- LED based light injection system

UV Laser calibration system

10.3 m × 2.3 m × 2.5 m Uniform field of 500 V/cm 170 tons of purified LAr (active volume ~80 tons)

TPC pipes

Time Projection Chamber

Three wire planes

Cathode -128 kV

Laser calibration

- Non-uniformities in the electric field can be well-understood and *calibrated out* using a UV laser
 - Accumulation of heavy positive ions
 - Inherent imperfections of the detector

Deviation from straight line can be corrected

Laser creates straight tracks

Energy reconstruction

Calorimetry

- Excellent energy resolution
 ~ 1 2%/VE(GeV) for tracks
- Multiple Coulomb Scattering angular deflections can be used to infer the momentum (important for non-contained tracks)
 - ICARUS suggests a ~ 16% resolution (Neutrino 2014)

Particle identification

• MicroBooNE can decisively answer the question whether the MiniBooNE excess is due to electrons or gammas

Cross-section measurements

Ideal detector for cross-section measurements

- ✓ Good energy resolution
- ✓ Excellent tracking capabilities
- ✓ Robust particle identification

Process	Reaction	MicroBooNE 6.6 x 10 ²⁰ POT		
CC QE	$v_{\mu} n \rightarrow \mu^{-} p_{ind} r$	48,276		
CC RES	PILE HAN	26,852		
CC DIS	ν _μ N→μ ⁻ X	10,527		
CC Coherent	$\nu_{\mu} \operatorname{Ar} \rightarrow \mu^{-} \operatorname{Ar} + \pi$	376		

Multi-nucleon effects increase CCQE x-sec

- ArgoNEUT has already published some very important results
 - MicroBooNE is expected to make further progress ...

Supernova neutrinos

- A core-collapse supernova produces a burst of neutrinos of all flavors. First observed for SN1987A
 - Information on astrophysical phenomena
 - Physics of SN neutrinos very interesting
- Low energy neutrinos, MeV
- Detection channels:

$$- v_{e} + {}^{40}\text{Ar} \longrightarrow e^{-} + {}^{40}\text{K} ({}^{40}\text{K}^{*})$$

$$- \overline{v_{e}} + {}^{40}\text{Ar} \longrightarrow e^{+} + {}^{40}\text{Cl} ({}^{40}\text{Cl}^{*})$$

$$- v_{x} + {}^{40}\text{Ar} \longrightarrow v_{x} + {}^{40}\text{Ar} ({}^{40}\text{Ar}^{*})$$

$$- v_{x} + e^{-} \longrightarrow v_{x} + e^{-}$$

- Cannot trigger on these events
 - Data continuously stored in a cyclic buffer for
 ~ a few hours, waiting for a SNEWS alert

Background to proton decay

Calendar

ACCOMPLISHED STEPS:

- The TPC has been constructed
- Cold electronics and wires installed
- TPC inserted in the cryostat, endcap welded and detector moved to LArTF
- Vessel insulated and platform and cables installed
- Racks installation and tests
- Cryogenics installation completed
- Passed with success the CD-4 review !

TO BE DONE:

- Gas purge and cool down
- Filling with LAr and purification
- Ramp up High Voltage
- Detector commissioning

FNAL short-baseline program

Slide from A. Ereditato, NuFact 2014

Concluding remarks

- MicroBooNE will be a very beautiful and a multi-purpose detector ... and presumably will deliver some equally wide and rich physics results !
 - Only possible due to the excellent capabilities of MicroBooNE detector
- MicroBooNE R&D includes:
 - Electron drift at 2.5 m (HV, argon purity)
 - Design, manufacture and use of cold electronics
 - UV laser calibration
 - Fill without evacuating
 - Automatized reconstruction
- Data taking is expected by spring 2015
- ... until then stay tuned !

International collaboration 23 institutes, 134 people

Thank you !

Leonidas kalousis@vt.edu

SPARES

Booster Neutrino Beam

<E> ~0.8 GeV

<E> ~0.6 GeV

Phys. Rev. D 79 (2009) 072002

BNB and NuMI beamlines

• Besides BNB MicroBooNE will also record neutrinos from the Main Injector beam (NuMI).

The MiniBooNE Detector

541 m downstream of target, 3 m overburden
12.2-m diameter sphere (10 m fiducial volume)
800 tons pure mineral oil (CH₂), fiducial = 450 tons
1280 inner phototubes, 10% area (320 new, 960 old)
240 veto phototubes (old LSND)
Simulated with a GEANT-3 Monte Carlo

Slide from I. Stancu, FNP 2011

Cutting the Gordian Knot ...

- MiniBooNE is a spherical cherenkov detector
 - 800 tons of mineral oil instrumented with 1280 phototubes

- Electrons and photons are indistinguishable
 - The same fuzzy rings in both cases
- MiniBooNE is blind to protons
 - Can multi-nucleon pairs bias the energy reconstruction ?

Cutting the Gordian Knot ...

- MiniBooNE is a spherical cherenkov detector
 - 800 tons of mineral oil instrumented with 1280 phototubes

Ctrons and photons are indistinguishable

- The same fuzzy rings in both cases
- MiniBooNE is blind to protons
 - Can multi-nucleon pairs bias the energy reconstruction ?

Noble liquids

	He	Ne	Ar	Kr	Xe	Water
Boiling Point [K] @ Iatm	4.2	27.1	87.3	120.0	165.0	373
Density [g/cm ³]	0.125	1.2	1.4	2.4	3.0	1
Radiation Length [cm]	755.2	24.0	14.0	4.9	2.8	36.1
dE/dx [MeV/cm]	0.24	1.4	2.1	3.0	3.8	1.9
Scintillation [y /MeV]	19,000	30,000	40,000	25,000	42,000	
Scintillation λ [nm]	80	78	128	150	175	

... to quote J. Asaadi: this table was first produced by my boss Mitch Soderberg and if he had patented it he would have 10's of dollars because it shows up in every LAr talk I've ever seen!

- LAr calorimeters proposed Willis and Radeka in 1974
- C. Rubbia, and others, introduce the LArTPC concept
 - Extensive R&D and effort leads to the ICARUS T600
- By 2014, a great wealth of experimental proposals

LArTF chronicles

... may I present you MicroBooNE !

TPC cage construction

Arrival of the cryostat

Wire planes

Electronics and Data Acquisition

- Pre-amplifying CMOS ASIC in LAr at 87 K
 - Lower thermal noise; reduce capacitive noise and pickup
 - Radeka et al, J. Phys. Conf. Ser. 308 012021

TPC Front End Electronics

- Pre-Amp CMOS ASIC in liquid at 87K
 - reduce capacitive noise and pickup and lower thermal noise
 V. Radeka et al, J. Phys.: Conf. Ser. 308 012021
- Warm interface electronics
 - Intermediate amplifiers, service board

cold motherboard

- Digitizing electronics
 - Receiver and ADC board

Slide from M. Weber

Receiver/ADC board

Time Projection Chamber (I)

Time Projection Chamber (II)

Three wire planes, 3 mm

Remote controlled steered laser beam (mirrors)

July State

Slide from M. Weber

HV Feedthrough Test Fit

24

LAr scintillation light

Event reconstruction

... an oversimplified diagram of the actual picture

Hits

Multiple Coulomb Scattering

Small angle deflections are governed by the so-called modified Highland formula

$$\theta_0 = \frac{13.6}{p\beta c} \sqrt{\frac{\ell}{X_0}} \left[1 + 0.0038 \, \ell n \left(\frac{\ell}{X_0}\right) \right]$$

- θ_0 : RMS of the $\Delta \theta$ distribution (mrad)
- p : particle momentum (GeV/c)
- \ell : material thickness
- X_0 : radiation length
- The whole idea: use the projections of the angular deflections to get to the particle momentum
 - Can be done in precision tracking detectors

Particle Identification

Some examples. 0

17

A multi-purpose instrument

- MicroBooNE will also record neutrinos from SN
 - A separate and continuous data stream

$$v_e + {}^{40}\text{Ar} \longrightarrow e^- + {}^{40}\text{K} ({}^{40}\text{K}^*), \overline{v_e} + {}^{40}\text{Ar} \longrightarrow e^+ + {}^{40}\text{Cl} ({}^{40}\text{Cl}^*)$$

- $v_x + {}^{40}\text{Ar} \longrightarrow v_x + {}^{40}\text{Ar} ({}^{40}\text{Ar}^*), v_x + e^- \longrightarrow v_x + e^-$
- Study the background relevant to proton decay
 - Golden channels : $p^+ \longrightarrow K^+ + \overline{v_{\mu}}$
 - and neutron-antineutron oscillations
- Valuable R&D for more massive detectors
- Many other ideas on the table
 - Burst neutrinos
 - Direct dark matter searches
 - Measure the nucleon axial form factor to improve dark matter searches, arxiv:1406.5204

... eppur si muove

