TREX-DM:

a low background Micromegas-based TPC for low mass WIMP detection

F.J. Iguaz* on behalf of TREX-DM group (*) iguaz@unizar.es 7th Symposium LTPCs for Rare Events — 15-17th December 2014

Many thanks to my colleagues F. Aznar, J.F. Castel, S. Cebrián, J.G. Garza, I.G. Irastorza, A.Lagraba & A. Peiró for their work all this years!!!

Work partially supported by Juan de la Cierva program

StG-2009: T-REX

Outline

- Motivation for a low mass WIMPs Micromegas detector.
- TREX-DM: description & comissioning.
- A first background model of TREX-DM.
- Conclusions and prospects.

Motivation: low mass WIMP detection

Dark Matter experiments focused on ~50-200 GeV WIMPs

- Heavy nuclei target.
- Large target masses.
- Low background levels:
 - Radiopurity control
 - Electron/nuclear recoil discrimination -> high threshold -> less sensitive to low WIMP masses.

What happens if mass <10 GeV?

- Energy threshold < 1 keV.
- Electron/nuclear discrimination.
- Quenching factor at keV energies.
- DAMA/LIBRA signal is near these masses.

Micromegas: a reminder

I. Giomataris, NIMA 376 (1996) 29

It is an amplification structure used as readout in a Time Projection Chamber.

- **Conversion region:** radiation create electrons, which drift to the readout.
- **Amplification region**: electrons pass through mesh holes due to a high field difference & are amplified. Electron & ion movement induce signals in both mesh & strips.

Three technologies:

- **Classical:** first CAST detectors, ATLAS-MM (resistive).
- Bulk: COMPASS, T2K, CLAS-12, nTOF, AstroBoX, ForFire, MIMAC, FIDIAS...
- Microbulk: CAST, nTOF, NEXT-MM,...

Motivation: why a Micromegas TPC?

- A low energy threshold (450 eV) is feasible in gaseous detectors (JINST 9 (2014) P01001).
- Topology information available. Already proved for low energy x-rays (JINST 8 (2013) C12042).
- Kapton-copper detectors are intrinsic radiopure (Astr. Part. 34 (2011) 354).
- Consolidated manufacture (JINST 5 (2010) P02001, JINST 7 (2012) P04007).
- Assesment of material radiopurity for Rare Event Searches (JINST 8 (2013) C11012).
- Scaling up experience in NEXT-MM (JINST 9 (2014) P03010).

Challenges:

- Construction of large radiopure MM detectors.
- Background level: systematic radiopurity control.
- Sub-keV energy threshold for a large area.
- Quenching factor in gases: limited literature.

TREX-DM: a MM-TPC for low mass WIMPs

Goals

- A large Micromegas detector with a mass x100 larger than CAST.
- Optimization of the design for low energy threshold and low background level.
- NOT focused in directionality like MIMAC & DRIFT -> operation at high pressure.

Commissioning timeline:

- Surface at Zaragoza: 2012-15
 - First setup: design, construction & comissioning.
 - Systematic measurement of the radiopurity of all components.
 - General characterization of bulk MM in Argon+2%iso 1-10 bar.
 - Dependence of energy threshold with electronics chain & pressure.
 - Discrimination of x-rays vs muons by the cluster width. Extension to neutrons?
 - Test of other interesting gases like neon.
- Zaragoza -> Underground at LSC: 2015-16.
 - Installation of radiopure components: Micromegas detectors, flat cables, ...
 - Cleaning of all components.
 - Installation of a 10 cm thick lead shielding.
 - Possible installation at LSC in 2016 for a physics run. Still in study.

TREXDM: general description.

Main features of the setup

- Copper vessel: 6 cm thickness, 0.5 m diameter, 0.5 m length.
- Two volumes & a central cathode.
- Drift cage made of kapton&copper.
- 20 x 20 cm² bulk MM detectors.
 Bulked at IRFU/Saclay workshop.
- AFTER-based electronics. Possible update to AGET in next version.
- 4 points/side of calibration for a ¹⁰⁹Cd source inside a plastic tube.
- Base gas: $Ar+2\%iC_4H_{10}$.

Other features

- Structure for an easy installation of any component at central cylinder & both caps.
- Gas & pumping system.
- Slow-control based on Arduino developped by A. Peiró: flow, temperature, pressure...

TREX-DM: a view of the experiment

TREXDM in detail: the Micromegas detector

Flat cables

AFTER-based electronics

- 20 x 20 cm² bulk Micromegas: 432 X-strips & 432 Y-strips, 0.5 mm pitch, 128 μm gap.
- Strips signals extracted by 4 flat cables using 300-Samtec connectors. A small shielding included too: **1 cm copper + 1 cm lead**.
- An interface card links a flat cable to the FEC. Any short-cut may be eliminated by a jumper.
- AFTER-based electronics. Possible update to AGET in next version, with autotrigger capabilities (lower energy threshold).

Samtec

Many thanks to IRFU/SEDI-Micromegas workshop!!!

TREXDM: comissioning & first results

Comissioning

- Flat cables & high voltages feedthroughs validated before installation: leak < 10⁻⁵ mbar l /sec.
- Vessel tested in vacuum & at pressure < 10 bar.
- Drift cage successfully tested in argon-based mixtures for fields < 200 V/cm/bar up to 10 bar.
- Leak detection: at HV feedthrough and some flat cables. Values are the same as in test-bench.

First results

- First signals observed on 20th November 2014.
- The general performance at 1.2 bar was studied recording mesh pulses by an oscilloscope at different voltage settings:
 - **Electron transmission:** large operation range.
 - Gain: modest values (up to 10³).
 - Energy resolution: 19% FWHM at 22 keV.
- Some improvement expected at higher pressures due to the low quantity of quencher in gas.

10

TREXDM: first results

First 2D events

- AFTER-based electronics used to take some calibration and background data.
- TREX-DM decoding was successfully reconstructed.
- Energy spectrum of ¹⁰⁹Cd source was reconstructed. The energy resolution at 22.1 keV (21% FWHM) is similar to former values.
- **Energy threshold at 2 keV**, limited by a 1 MHz frequency noise, probably due to electronics.

NEXT steps:

- Characterization at pressures up to 10 bar.
- Possible use of other gases: 5%iso, or neon-based. 200
- Some near-term updates:
 - Filter for cathode voltage.
 - Better grounding. Not fully understood.

TREX-DM: a background model in Argon

Simulation

- TREX-DM geometry implemented in Geant4.
- CAST simulation code addapted. Some minor changes in data flow (two-volumes, diffusion).
- Final data in AFTER-based format. Same analysis may be applied to real & simulation data.
- First validation: calibrations of CAST-MM detectors.
- Gas: $Ar+2\%iC_4H_{10}$ at 10 bar. Mass = 300 gr.

Analysis: extension of CAST-MM

- Low energy x-rays/muon discrimination.
- Likelihood method based on x-ray's features of a ¹⁰⁹Cd source at a calibration point.
- Rol: 2-7 keV.
- Selection criteria:
 - **Fiducial area**: first 5 mm of MM are used as veto (91.8% of efficiency).
 - **Cluster features** (90% of efficiency).

TREX-DM: background model in Argon

Component	Material	Bck level (keV ⁻¹ kg ⁻¹ day ⁻¹)
Muons	-	2 x 10 ⁻²
³⁹ Ar	-	2 x 10 ²
Vessel	Copper	4 x 10 ⁻¹
Connectors	Fujipoly	3 x 10 ⁻¹
Drift structure	Teflon	10-3
Central cathode	Copper	2 x 10 ⁻²
mM detector	Cu-Ka	10 ⁻¹
TOTAL	Without ³⁹ Ar	8 x 10 ⁻¹

- Preliminar result: 2 x 10² keV⁻¹ kg⁻¹ day⁻¹.
- Outer gamma flux & external shielding not yet included.
- Main contribution due to the ³⁹Ar isotope. If excluded, level is ~1 keV-1 kg-1 day-1.
- Other main contributions: copper vessel & inner electrical connectors.

TREX-DM: prospects

- Preliminar background levels based on this analysis:
 - Argon: $2 \times 10^2 \text{ keV}^{-1} \text{ kg}^{-1} \text{ day}^{-1}$. Mass = 0.300 kg.
 - Neon: $2 \text{ keV}^{-1} \text{ kg}^{-1} \text{ day}^{-1}$. Mass = 0.160 kg.
- Not yet included a z-dependency.
- Further reduction expected with a neutron/electron discrimination (J. Billard et al, JCAP 07 (2012) 020).
- Supossing a 0.5 keV energy threshold, TREX-DM could be sensitive to DAMA signal for a 1 kg-year exposure in a conservative scenario.

Key points for near-term future

- Demostrating a low energy threshold increasing mass (pressure).
- Quenching factor must be measured.
 Common interest for several groups!

Conclusions & prospects

Conclusions

- Actual Dark Matter experiments are focused on >50 GeV WIMP masses. For lower masses we need: low energy threshold keeping low background levels.
- TREX-DM: a large Micromegas-based TPC for low WIMP masses.
- Challenges: low energy threshold for a large detector area at high pressure.
- Actual status: comissioning on surface. Most components validated.
- Micromegas detectors acharacterized at 1.2 bar in $Ar+2\%iC_4H_{10}$. Modest values for energy resolution (19% FWHM at 22 keV) and gain (< 10^3), probably due to the low quencher quantity. Improvements expected at higher pressures.
- First data taken with AFTER-based electronics.

Prospects

- Characterization up to 10 bar. Other possible gases: 5%iso, or neon-based.
- Installation of radiopure components in 2015: detectors, flat cables, ...
- Possible installation at LSC in 2016 for a physics run. Still in study.

In memoriam...

Marc Anfreville

Michel Boyer

My IRFU/SEDI colleagues, who left us this year.

Back-up slides

X-ray cluster's topology

J.G. Garza et al., JINST 8 (2013) C12042 F.J. Iguaz et al., PoS(TIPP2014)295

- CAST Microbulk micromegas. 50 μm gap.
- Electron beam at CAST Detector Laboratory.
- Fluorescence lines from 2.3 (gold) to 8.0 keV (copper) used to calculate the signal efficiency.
- Clusters are wider at low energies because most of the x-rays are absorbed in the first mms just after the window and suffer more diffusion.
- Cluster differences increase at low energies as more charge fluctuations between the XY planes.

18

Argon-based at 1-10 bar

F.J. Iguaz et al., RD51 meeting, Fribourg May 2010

Microbulk micromegas. 50 μm gap.

Ar+1%iso ⁵⁷Co source

Pure argon
241Am source

Xe-TMA at 1-10 bar

- Microbulk micromegas. 50 μm gap.
- ¹⁰⁹Cd source (22.1 keV x-rays).
- Best performance for 1.5-2.5% TMA.
- Maximum gain of 2x10³ (5 x 10²) at 1 (10) bar, i.e., x3 than in pure xenon.
- Energy resolution: 7.3 (9.6) % FWHM at 22.1 keV for 1 (10) bar, i.e., a factor 2 (3) better than in pure xenon.

S. Cebrian et al., JINST 8 (2013) P01012 D C Herrera et al, J. Phys.: Conf. Ser. 460 012012

Gain vs %TMA for a fixed amplification field

CF₄ at 0.1-2.4 bar

P. Jeanneret et al., NIM A 500 (2003) 133

- Bulk micromegas. 128 μm gap.
- ⁵⁵Fe source (5.9 keV x-rays).

Electron/neutron discrimination

- First studies: A. Tomas in CYGNUS 2007.
- The cluster width is the key parameter and is more efficient at low pressures.
- It sharply increases from electrons but remains constant for neutrons.

F.J. Iguaz, Phys. Proc. 37 (2012) 1079

Maximum and medium cluster widths

J. Billard, F. Mayet, D. Santos, JCAP 04 (2012) 006

MIMAC directionality in CF₄

- The angular resolution & sense recognition depends on the energy and the drift distance.
- The sense recognition for recoil energies below 100 keV is unrealistic.
- Focus on axial directional detectors.

Fluorine recoil track

TREX-DM: a MM-TPC for low mass WIMP detection, F.J. Iguaz et al.

Measurement of quenching factor by MIMAC experiment

D. Santos et al., arXiv:0810.1137 O. Guillaudin et al., arXiv:1110.2042

- A complete R&D program to measure the quenching factor of energy recoils in different gas mixtures.
- Measured in ³He & ⁴He.
- Actual efforts focused on CF4.

Quenching factor in Helium 3 & 4