Gaseous photomultipliers and liquid hole-multipliers for future noble-liquid detectors

L. Arazi[1], A. E. C. Coimbra[1,2], E. Erdal[1], I. Israelashvili[1,3], M. L. Rappaport[1], S. Shchemelinin[1], D. Vartsky[1,4], J. M. F. dos Santos [2] and A. Breskin[1]

[1] Weizmann Institute of Science
[2] Coimbra University, Coimbra, Portugal
[3] NRC Negev, Israel
[4] On leave from Soreq NRC, Israel

7th Symposium on Large TPCs for Low-Energy Rare-Event Detection, Paris
November 14, 2014
CRYOGENIC GASEOUS PHOTOMULTIPLIERS
Dual-phase LXe TPC with Gaseous Photo-Multipliers (GPMs)

- Potentially low-cost (in-house module assembly)
- 4π coverage (improved sensitivity to low-mass WIMPs)
- 90-95% filling factor (compared to 50-60% with PMTs)
- ~10-fold better position resolution through smaller pixels → better calibration and background discrimination?
Thick Gas Electron Multiplier (THGEM)

~ 10-fold expanded GEM

Chechik VIENNA 2004

- Drilled
- Etched

SIMPLE, ROBUST, LARGE-AREA

Printed Circuit-Board Technology

- Robust, if discharge no damage
- Can be cascaded for high gain
- Effective single-photon detection when coupled to a photocathode
- Few-ns RMS time resolution
- Sub-mm position resolution
- Can be made of radio-pure materials
- Cryogenic operation: OK
- Broad pressure range: 1 mbar - few bar

Thickness 0.4-1mm

L. Arazi, 7th Symp. on Large TPCs, Paris, Dec 17 2014
Top array GPM – triple THGEM with reflective CsI

Pixel readout

Reflective Cesium Iodide (CsI) photocathode

Ne/CH₄

Xe

UV window

~10 mm
Wall GPM – semitransparent + reflective CsI

Ne/CH$_4$ ~10 mm

Semitransparent CsI

Reflective CsI

Pixel readout

L. Arazi, 7th Symp. on Large TPCs, Paris, Dec 17 2014
WIS Liquid Xenon (WILiX) facility: playground for detector R&D

WILiX schematic view

4” triple-THGEM
GPM

Smaller cryo-GPM see: Duval 2011 JINST 6 P04007

L. Arazi, 7th Symp. on Large TPCs, Paris, Dec 17 2014
First-ever demonstration of S1 & S2 recording by GPM coupled to dual-phase LXe TPC!

Detect single photons AND massive S2 signals!

October 24 2014
Gain and stability

- \(\sim 1 \cdot 10^5\) enough for >90% single-PE detection above noise
- Gain reproducible to 10-15% over many days
- **NO SPARKS** at \(1.1 \cdot 10^5\) for alpha S1+S2 with ~100-fold larger cosmics S2!
 (discharge probability < 3 \cdot 10^{-6})
Energy resolution

$\alpha S1 \sim 30$ PEs

$\sigma/E = 11\%$

Ne/CH$_4$(5%)
514 torr, 180K
Gain $1.1 \cdot 10^5$

S2 energy resolution similar to XENON100

$\alpha S2 \sim 5000$ PEs

60 keV γ

$\sigma/E = 8.7\%$

α & γ coincidence
Time resolution

GPM signal lags by ~200 ns after PMT

But with only ~1.2 ns jitter!
Overall QE and expected PDE (top array)

$$QE_{eff} = QE_{CsI} \times A_{eff} \times \varepsilon_{ext} \times \varepsilon_{col}$$

- QE_{eff}: probability to get a photoelectron into a THGEM hole per photon passing the window
- QE_{CsI}: intrinsic CsI QE (at LXe temp)
- A_{eff}: fraction of detector area covered with CsI
- ε_{ext}: extraction efficiency – the probability that a photoelectron will not be backscattered to the CsI
- ε_{col}: collection efficiency – the probability that an extracted photoelectron will be pulled to a THGEM hole
Now 0.77
Can be optimized to >0.85

\[
\text{QE}_{\text{CsI}}
\]

\[
\varepsilon_{\text{ext}}
\]

\[
\varepsilon_{\text{col}}
\]
QE/PDE of top GPM array - bottom (optimistic) line

\[Q_{\text{eff}} = Q_{\text{Csl}} \times A_{\text{eff}} \times \varepsilon_{\text{ext}} \times \varepsilon_{\text{col}} \approx 0.25 \times 0.85 \times 0.85 \times 1 = 0.18 \]

- Including window transmission (0.9) and probability for signal above noise (~ 0.95) we expect \(PDE \approx 0.15 \)
- With a filling factor of 0.9-0.95 the overall PDE is expected to be ~ 0.14
- PMTs: for QE=0.36, collection efficiency 0.9 and filling factor 0.5 \(\rightarrow \) PDE = 0.16
- For wall GPM we expect PDE > 0.2
Light Yield with \(4\pi\) coverage (wall GPM)

- DARWIN-like 2m LXe TPC with wall GPMs & 90% transparent field cage
- Top & bottom arrays: PMTs (QE=36%, CE=90%, filling factor=55%), or GPMs with equivalent overall PDE; XENON1t-like meshes
LIQUID HOLE MULTIPLIERS
BIGGER IS BETTER?

- S2/S1 discrimination in XENON100 and LUX – fantastic!
- Will it work on a few-meter diameter TPC?
- Grids and liquid surface must be parallel everywhere at all times

\[S_2 \sim N_e E_{gas} d_{gas} \]

- Concerns: tilt, ripples, grid deformation, level variations with conditions
 → loss of \(S_2 \) resolution → loss of discrimination power!

L. Arazi, 7th Symp. on Large TPCs, Paris, Dec 17 2014
Can one have $S_1 + S_2$ in single phase liquid-only TPC?

4π geometry with immersed GPMs

LXe level

Recent alpha-induced scintillation S_1 and S_2 electroluminescence signals recorded from a 10 micron diameter wire in LXe.

E. Aprile et al.; 2014 JINST 9 P11012

K. Giboni 2011
2014 JINST 9 C02021, 2014 JINST 9 P12007

L. Arazi, 7th Symp. on Large TPCs, Paris, Dec 17 2014
Can we generate S2 in the holes of an immersed THGEM?

Arazi et al 2013 JINST 8 C12004

YES WE CAN!
Too good to be true?

- Photon yield: \(~600\) photons/e in THGEM hole at \(~30\) kV/cm
- S2 onset: few kV/cm

Arazi et al 2013 JINST 8 C12004
Our present understanding: a “Bubble Chamber”

- **S2 signals already at few kV/cm** *(as in Xe gas)*
- **S2 responds to pressure:**
 - **Disappears** after step increase in pressure *(bubbles collapse)*
 - **Reappears** when decreasing pressure *(bubbles form again)*

Hypothesis:
S2 produced in gas bubbles trapped under the THGEM
Near future: controlled bubbling by carefully-adjusted heating → high resolution

Bubbles formation

Graph showing:
- T(cold finger) = 163K, 1.3 bar steady state bubbling
- S2 rate [Hz]
- Set T(cold finger) = 173K, P → 2.1 bar, bubbling stops
- T(chamber bottom) = 179.35K, 2.1 bar, bubbling restarts
- No bubbling, chamber temperature rising slowly
- 1.5 h of super-steady bubbling

L. Arazi, 7th Symp. on Large TPCs, Paris, Dec 17 2014
S2 generation in bubbles is surprisingly steady

Stability + controlled effect + resolution + low-field operation ➔ should be exploited towards single-phase noble-liquid DM detectors!

Repeatable S2 yields over many weeks

Energy resolution with non-spectroscopic alpha source

Several tens of photons/e- @ 3kV

Resolution ~ 12%
Getting close to XENON100 with PMTs

Oct. 2014

low energy tail resulting from energy depositions inside the non-spectroscopic α source
Proposed Implementation in single-phase TPC

- THGEM top coated with CsI
- **Resistive wires underneath, to form bubbles in controlled way**
- S_1 photoelectrons & S_2 electrons focused into holes, inducing electroluminescence in bubbles
- If THGEM field too low – replace by GEM, or GEM+CsI followed by THGEM
Maybe something like this?
Summary

- Future large scale dark matter experiments call for new solutions
- Gaseous detectors *raison d’être*: affordable large-area coverage
- \(4\pi\) coverage by GPMs \(\rightarrow\) large improvement in sensitivity for low-mass WIMPs
- Top-array GPMs will have 10-fold better position resolution \(\rightarrow\) better calibration, background estimation and rejection?
- In-house assembly \(\rightarrow\) significant reduction in cost compared to PMTs
- First results with 4” GPM (top array): large dynamic range, good stability, energy and temporal resolution; overall PDE close to PMTs
- **R&D on wall GPM underway**
- LHMs: for now a curiosity, but may open new options for multi-ton experiments