

Recent results and plans of double phase LAr LEM TPC

Shuoxing Wu

on behalf of LAGUNA-LBNO and WA105 collaboration

Institute for Particle Physics, ETH Zurich

TPC symposium, Paris, 15.12.2014

Introduction - the Liquid Argon (LAr) TPC

LAr properties

Density	1.4 g/cm		
Boiling point @ 1 atm	87.3 K		
Triple point	83.8058 K, 68.89 kPa		
W _{ion}	23.6 eV		
Stopping power (MIP)	2.1 MeV/cm		
Rayleigh scattering length	90 cm		
radiation length	14 cm		
Molière radius	9.25 cm		
Percentage in air	0.93%		

Light production in LAr:

- 128 nm wavelength, ~5×10⁴ photon/MeV
- LAr transparent to its own scintillation

Charge production and transportation in LAr:

- 10 fC/cm (MIP)
- Drift velocity of 2 mm/µs @ 1 kV/cm
- Diffusion ≈ mm after meters' drift

Giant LAr TPC is the next generation neutrino experiments

LAGUNA-LBNO programme and GLACIER

Large Apparatus for Grand Unification and Neutrino Astrophysics and

Long Baseline Neutrino Oscillations

LAGUNA-LBNO physics:

- 1. Accelerator based neutrino physics
 - Mass Hierarchy determination
 - δ_{CP} measurement
 - Sterile neutrino
- 2. Neutrino astronomy:
 - Solar neutrino
 - Atmosphere neutrino
 - Super-nova neutrino
- 3. Proton decay search

Giant Liquid Argon Charge Imaging expERiment

- Double phase LAr LEM TPC
- Two detectors with 20 kton and 50 kton fiducial mass as far detector for LAGUNA-LBNO

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Milestones towards GLACIER

- **> 2003:** the GLACIER concept
- A. Rubbia, Experiments for CP-violation: A giant liquid argon scintillation, Cherenkov and Charge imaging experiment? arXiv:hep-ph/0402110
- \rightarrow Proof of principle with 10x10 cm² double phase LAr LEM-TPC prototype:
- A. Badertscher et al., "Operation of a double-phase pure argon Large Electron Multiplier Time Projection Chamber: Comparison of single and double phase operation "NIM A617 (2010) p.188-192
- A. Badertscher et al., "First operation of a double phase LAr Large Electron Multiplier Time Projection Chamber with a two-dimensional projective readout anode" NIM A641 (2011) p.48-57
- \rightarrow First successful operation of a 40x76 cm² device in November 2011:
- A. Badertscher et al., "First operation and drift field performance of a large area double phase LAr Electron Multiplier Time Projection Chamber with an immersed Greinacher high-voltage multiplier" <u>JINST 7 (2012) P08026</u>
- A. Badertscher et al., "First operation and performance of a 200 lt double phase LAr LEM-TPC with a 40x76 cm² readout", <u>JINST 8 (2013)P04012</u>
- > 10x10 cm² double phase LAr LEM-TPC prototype: further R&D towards final, simplified charge readout for GLACIER:
- Long-term operation of a double phase LAr LEM Time Projection Chamber with a simplified anode and extraction-grid design, <u>JINST 9 P03017</u>
- Performance study of the effective gain of Large Electron Multipliers in LAr-LEM TPCs, arXiv:1412:4402

Plans:

- 3x1x1m³ pre-prototype being built in B182@CERN
- 6x6x6m³ prototype (WA105) to be operated at CERN NA approved by CERN SPSC.

Final goal: Giant LAr LEM TPC as far detector for a Long Baseline Neutrino Oscillation (LBNO) experiment (SPSC-EOI-007)

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

The novel double phase readout

- 4.) Charge collection on a multilayer 2D anode readout (symmetric unipolar signals with two orthogonal views)
- 3.) Charge multiplication in the holes of the Large Electron Multiplier (LEM)

- 2.) Drift electrons are efficiently extracted into the gas phase
- 1.) Ionization electrons drift towards the liquid argon surface

For MIPs:

- 10 fC/cm ~10 k e⁻ for each strip (3 mm pitch,2 views) SNR of 10 (noise of 1000 e⁻)
- SNR of 100 gain of 20 is needed

Cosmic event at effective gain~20

Cosmic event at effective gain~160

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

GLACIER 20 and 50 kton charge readout system

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The 10x10x20 cm³ proof of principle LAr LEM TPC

We're developing:

- **➤ Low noise (capacitance) 2D anode.**
- > LEM with uniform and long term stable gain and discharge resistance.
- > Simplified readout electronics system.

Anode requirements for large area readout

To reach basic GLACIER 4x4m² CRP (2m readout length) design:

- reduce capacitance: have long readout strips while keeping minimum noise (upper limit for ~1000 e- ENC noise ~ 350 pF)
- simplify production: integrate two views on same PCB layer
- symmetric X-Y charge sharing

Best solution to optimize capacitance and resolution

 $\Delta Q_0/\Delta s_0$ [fC/cm]

φ [°]

φ [°]

ETH

The Large Electron Multiplier (LEM)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Hole diameter: 300 μm 500 μm

1 mm 0.8 mm 0.6 mm

Effects on the E-field

Hole layout:

Rim size:

Systematic inspection of LEM parameters

Fitting function:
$$G_{eff}(E, \rho, t) \equiv \mathscr{T}e^{\alpha(\rho, E)x} \times \mathscr{C}(t)$$
 $\alpha(\rho, E) = A\rho e^{-B\rho/E}$

arXiv:1412:4402

- Gain curves difference explainable from amplification length and central E field
- Gain over 100 is feasible for each LEM

Optimised parameters:

- ➤ 1mm thickness
- > 500 µm diameter hole
- > 40-50 μ m rim size
- > 800 μ m pitch
- ➤ hexagonal arrangement

LEM gain stabilities

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Gain uniformity

ETTEidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Towards large area:

- the 50x50 cm² anode and LEM

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The extraction grid system

Extraction grid

- √100 micron stainless wire with 3 mm pitch
 in x and y directions
- ✓effect on gain uniformity tested in LAr on 10x10 cm² readout
- ✓design has been extensively tested on a 1x1 m² prototype

The on-going 3x1x1 m³ LAr LEM TPC

Complete 3D of the 3x1x1 m³ TPC

Activities towards the 3x1x1 m³ TPC

out structure (arrived two weeks ago)

drawings of CRP, drift cage

3x1 m2 CRP SS structure being built

drawings of top cap

Swiss Federal Institute of Technology Zurich

In the coming years: the LBNO-DEMO (WA105) WA.105

LBNO prototype WA105 to be built at CERN: 6x6x6 m³ (~300 ton) double phase LAr demonstrator in charged-particle test beam.

Time scale 2015-2018 Site: EHN1@CERN

See Luca Agostino's presentation

Goal:

Technical: demonstrate all the feasibility of LBNO 20/50 kton

scale LAr TPC

Physical: charged pions and proton cross-section on argon

nuclei, develop reconstruction algorithm...

Summary

Good progress has been made towards reaching the goal of large area readouts for LAr-LEM TPCs:

- > Low capacitance (~150 pF/m) 2D anode turns out to fulfill the requirements on resolution
- > Initial gain over 100, stable gain around 30 were reached by LEMs
- > Gain uniformity within ±10% achieved by matching extraction grid with anode strips
- ➤ large area readout mechanically feasible

The 3x1x1 m³ LAr LEM TPC is the focus for next 1-2 years

Thank you for your attention!

value	\mathscr{T}	x (mm)	G_{eff}^{max}	E_0^{max} (kV/cm)
hexagonal	0.59 ± 0.18	0.96 ± 0.07	182	35
square	$0.34 \!\pm 0.14$	0.94 ± 0.08	123	35
500 μm	0.46 ± 0.14	0.73±0.05	124	39
$400~\mu\mathrm{m}$	0.41 ± 0.11	0.81 ± 0.05	124	38
$300 \mu m$	0.20 ± 0.03	0.88 ± 0.04	134	36
1 mm	0.46 ± 0.14	0.73 ± 0.05	124	39
0.8 mm	0.46 ± 0.15	0.69 ± 0.06	88	41
0.6 mm	0.58 ± 0.2	0.55 ± 0.06	36	46
40 μm	0.34 ± 0.14	$0.94{\pm}0.08$	123	35
80 μm	0.46 ± 0.14	0.73 ± 0.05	124	39
	hexagonal square 500 μm 400 μm 300 μm 1 mm 0.8 mm 0.6 mm	hexagonal 0.59 ± 0.18 square 0.34 ± 0.14 0.46 ± 0.14 $0.400~\mu m$ 0.41 ± 0.11 0.20 ± 0.03 0.46 ± 0.14 $0.8~mm$ 0.46 ± 0.15 $0.6~mm$ 0.58 ± 0.2 0.34 ± 0.14	hexagonal 0.59 ± 0.18 0.96 ± 0.07 square 0.34 ± 0.14 0.94 ± 0.08 0.34 ± 0.14 0.94 ± 0.08 0.46 ± 0.14 0.73 ± 0.05 $0.400~\mu{\rm m}$ 0.41 ± 0.11 0.81 ± 0.05 0.20 ± 0.03 0.88 ± 0.04 0.46 ± 0.14 0.73 ± 0.05 $0.800~\mu{\rm m}$ 0.46 ± 0.14 0.73 ± 0.05 $0.800~\mu{\rm m}$ 0.46 ± 0.15 0.69 ± 0.06 $0.600~\mu{\rm m}$ 0.58 ± 0.2 0.55 ± 0.06 $0.600~\mu{\rm m}$ 0.34 ± 0.14 0.94 ± 0.08	hexagonal 0.59 ± 0.18 0.96 ± 0.07 182 square 0.34 ± 0.14 0.94 ± 0.08 123 $500~\mu{\rm m}$ 0.46 ± 0.14 0.73 ± 0.05 124 $400~\mu{\rm m}$ 0.41 ± 0.11 0.81 ± 0.05 124 $300~\mu{\rm m}$ 0.20 ± 0.03 0.88 ± 0.04 134 $1~{\rm mm}$ 0.46 ± 0.14 0.73 ± 0.05 124 $0.8~{\rm mm}$ 0.46 ± 0.15 0.69 ± 0.06 88 $0.6~{\rm mm}$ 0.58 ± 0.2 0.55 ± 0.06 36 $40~\mu{\rm m}$ 0.34 ± 0.14 0.94 ± 0.08 123

arXiv:1412:4402

tested parameter	value	E ₀ [kV/cm]	run-time [hrs]	Number of discharges	τ [days]	G_{eff}^0	G_{eff}^{∞}	$rac{G_{eff}^0}{G_{eff}^\infty}$
geometry	hexagonal	34	110	0	$0.32{\pm}0.07$	99	35	2.7
	square	34	52	0	0.30 ± 0.02	65	27	2.4
hole	500 μm	38	24	0	0.53±0.05	70	20	3.5
	$400~\mu\mathrm{m}$	37	50	2	0.53 ± 0.07	84	40	2.1
	$300 \mu\mathrm{m}$	33.5	75	3	0.75 ± 0.04	32	16	2.0
thickness	1 mm	38	24	0	0.53±0.05	70	20	3.5
	0.8 mm	42	82	0	$0.24{\pm}0.02$	73	22	3.3
	0.6 mm	46	95	1	0.18 ± 0.01	51	27	1.9
rim size	80 μm	38	24	0	0.53±0.05	70	20	3.5
	$40~\mu\mathrm{m}$	34	52	0	0.29 ± 0.02	65	27	2.4

arXiv:1412:4402

Other anodes tested

Shuoxing Wu ETHZ

Other anodes tested

Pattern too loose, non uniform charge collection between strips

TPC symposium, Paris, 201

Towards large area readout - the 1x1 m² charge readout system

1x1 m² G10 structure with fake anode/LEM

Implemented with real anodes and grid

Compact charge readout design

Swiss Federal Institute of Technology Zurich

The accessible cold frontend readout electronics

and the signal feed-through chimney

Towards a large area readout: the 40x76 cm² prototype

Large Electron Multiplier (LEM)

- ➤ Macroscopic gas hole multiplier (Thick GEM)
- more robust than GEMs (cryogenic temperatures, discharge resistant)
- manufactured with standard PCB techniques
- Large area coverable by 50x50 cm² modules
- Light quenching within the holes

2D projective anode readout

- Charge equally collected on two sets of strips (views)
- Readout independent of multiplication
- Signals have the same shape for both views:
 - -two collection views (unipolar signals)
 - -no induction view (bipolar signals) as in the case of a LAr-TPC with induction wires

So far largest area LEM/2D anode produced

Large area readout: the 40x76 cm² prototype

A. Badertscher et al. JINST 8 (2013) P04012

detector fully assembled

16 signal cables :

charge readout sandwich

4 capacitive level meters

going into the ArDM cryostat

Final connection to the CAEN DAQ system

Eidgenössische Technische Hochschule Swiss Federal Institute of Technology Zi

We have operated the detector for the first time in October 2011 for more than 1 month under controlled pressure: 1023±1 mbar A. Badertscher et al. JINST 8 (2013) P04012

Optimized field configurations:

LEM-Anode	1800 V/cm
LEM	35 kV/cm
LEM-grid	600 V/cm
extraction	2300 V/cm
drift	400 V/cm

delta ray identified and reconstructed

Effective gain:

 $(dQ/dx_{view0} + dQ/dx_{view1})/dQ/dx_{MIP} (\approx 10fC/cm)$

<dQ/dx>=146 fC/cm ->effective gain≈14.6, (S/N≈30) charge sharing between the two collection views: $(Q_1-Q_0)/(Q_1+Q_0)\approx 8\%$