Looking for a needle in a haystack: Direct Searches for Dark Matter

“The existence of this matter may seriously affect all previous estimates concerning the distribution of matter in the Universe.”
Fritz Zwicky 1957

P. Di Stefano, Queen's University
distefan@queensu.ca

- Dark matter: underground astrophysics
- Experimental efforts:
 - Clarifying the situation at low-masses
 - Forging ahead at high-mass
- How to confirm a signal, and investigating DAMA claim
Matter in the Universe

- Most matter appears only through gravitational effects
- Dark Matter at all Scales
 - Galaxies (rotation curves)
 - Clusters
 - Large-scale structure
 - Cosmic Microwave Background

Big Bang Nucleosynthesis: most of the dark matter is non-baryonic

Possible explanations?
- Gravity wrong? MoND??
- Massive Compact Halo Objects (MACHOs)? Microlensing?
- Neutrinos? Structure Formation?
- New Particles: Weakly Interacting Massive Particles (WIMPs)?
- …?
Solution to Dark Matter: SUSY WIMPs?

- **Supersymmetry (SUSY):**
 - So far undetected extension of standard model that may solve some of its riddles
 - Fermions ↔ Bosons
 - Broken at usual energies

- **LSP (χ):** Lightest SUSY Particle
 - Probably neutralino (mix of photino, zino and higgsinos)
 - Stable if R-parity conserved*
 - $m_\chi \sim \text{GeV-TeV (~} 1-10^3 \text{ m}_{\text{proton}}\text{)}$

- **Relevant relic abundance:**
 - $\Omega_c \sim 0.1$

- **Coupling to matter:**
 - Spin independent: $\sigma_a \propto A^2 m^2 \sigma_p$
 - Spin dependent: $\sigma = C J(J+1) m^2 \sigma_p$

*LEP, Tevatron ⇒ $m > 46 \text{ GeV}$ (J. Ellis et al., hep-ph/0004169)
SUSY and WIMPs in light of LHC

- Certain of the simplest (most appealing?) SUSY models favoring O(100 GeV) WIMPs now seem excluded (cf arXiv:1207.3185)
 - Remaining SUSY models allow O(1-1000 GeV) WIMPs (eg NMSSM Albornoz-Vasquez arXiv:1110.4817)

- WIMPs aren't necessarily SUSY → new interest in other extensions of Std Model:
 - Asymmetric Dark Matter (Zurek arXiv:1308.0338)
 - Isospin-Violating Dark Matter
 - Inelastic Dark Matter
 - Composite Goldstone Dark Matter (Hietanen arXiv:1308.4130)

- Experiments need to consider larger range of masses O(1 GeV) → O(1 TeV)

NMSSM, after Cerdeno
Physics Theory
Predicting Particles into Existence?

- Many hits, eg:
 - Positron: predicted by Dirac 1931, discovered by Andersen 1932
 - So far, Standard Model (SM) has not been wrong, at worst incomplete
 - W^+, Z_0: predicted Glashow, Weinberg, Salam 1960s, discovered UA1/UA2 1983
 - Tau neutrino; predicted 1970s, discovered by DONUT 2000
 - BEH boson: predicted 1960s, discovered by ATLAS/CMS 2012

- Some theoretical misses (hopefully useful), eg:
 - Nuclear democracy: 1960s
 - Early Technicolor: 1970s
 - Cosmion: 1980s

- ... jury still out on many extensions of SM
Direct Detection of WIMPs

- Counting experiments: build it and they will come?

- Theoretical ingredients:
 - WIMP local astrophysical distribution: speeds
 \(v_{\text{rms}} \approx 250 \text{ km/s}, \ v_{\text{Earth/Galaxy}} \approx 230 \text{ km/s (10% modulation over year)}, \ \text{density} \approx 0.3 \text{ GeV/cm}^3 \ldots \) Some uncertainties (graininess: Zemp et al 2008; non-Maxwellian: Stiff & Widrow 2003)
 - Cross-section (SI, SD)
 - Kinematics (elastic scattering)
 - Nuclear form-factor (loss of coherence)

- Recoil spectrum:
 \[
 \frac{dR}{dE} \approx \frac{\sigma n_0}{v_0 \mu^2} F^2(E) \int_{v_{\text{min}}}^{v_{\text{max}}} \frac{f(v)}{v} dv
 \]
Spectra: Effect of WIMP Mass

- Exponential-ish shape
- Few counts: <1 /kg/month
- The lighter the WIMP, the faster the fall
- Detector threshold effect
- Effects for different targets:
 - $\sigma \propto \mu^2 A^2$
 - Scattering kinematics

SI χ-Ge (σ-nucleon $= 1.0 \times 10^{-9}$ pb)

Rate (/kg/d/keV)

Recoil Energy (keV)
Ideal Experiments (No Background)

SI Sensitivity (No Bckgd, Thresh = 10 keV, 100 kg.y)

WIMP–Nucleon σ (pb)

- Same exposure (MT), threshold: sensitivities similar
- No background: $sensitivity \propto MT$
Ideal Experiments (No Background)

- Same exposure (MT), threshold: sensitivities similar
- No background: sensitivity \(\propto MT \)
- Real experiment: bckgd !.
 - No rejection: sensitivity limited by background
 - Partial bckgd rejection: sensitivity \(\propto \sqrt{MT} \)
Ideal Experiments (No Background)

- Same exposure (MT), threshold: sensitivities similar
- No background:
 \[\text{sensitivity} \propto MT \]
- Real experiment: bckgd !.
 - No rejection: sensitivity limited by background
 - Partial bckgd rejection:
 \[\text{sensitivity} \propto \sqrt{MT} \]
 - Total rejection:
 \[\text{sensitivity} \propto MT \]

SI Sensitivity (No Bckgd, Thresh = 10 keV, 100 kg.y)

WIMP–Nucleon \(\sigma\) (pb)
Escaping the Haystack in Mines and Tunnels: Going Underground to Reduce Background

Log(µ flux) (/m²/s)

- SURF: 4300 mwe
- Jinping: ~6000 mwe
- YangYang: ~2000 mwe
- Stanford: 20 mwe
- Soudan: 2100 mwe
- Kamioka: 2700 mwe
- Sudbury: 6000 mwe

Fast neutron flux

- Boulby: 3500 mwe
- Mt Blanc: 5000 mwe
- Gran Sasso: 3500 mwe
- Rustrel: 1500 mwe
- Canfranc: 2500 mwe
- Modane: 4500 mwe
- JinPing
- YangYang

Cosmic muon flux reduced

- Lewin & Smith, 1996

Log(µ flux) /m²/d

- 10⁶ /m²/d
- 4 /m²/d

Fast neutron flux

- ~ 10⁻⁶/cm²/s (Gran Sasso)

Depth (m water equivalent)

- 0 to 10 km
Soudan, MN

- Old mine converted to National Park
- Rock overburden: 2900 mwe
SNOLAB, Sudbury ON: ~6 kmwe
One of the deepest and cleanest labs

DEAP PICO
(Dark Matter) (DM)

CDMS ? (DM)

SNO+ (neutrinos)

Also: HALO (SN neutrinos), DAMIC (DM), PUPS (seismology) ...
More haystack: human radioactivity

- Typical human radioactivity: 8 kBq

- Main contributions:
 - \(^{40}\text{K}: \frac{T}{2} = 1.3 \times 10^9 \text{ y}\)
 - 89\% \(\beta^-\): \(E < 1.3 \text{ MeV}\)
 - 11\% \(\text{g}\): \(E = 1.5 \text{ MeV}\)
 (and 3 keV X-ray: cf DAMA)
 - \(^{14}\text{C}: \frac{T}{2} = 5730 \text{ y}\)
 - 100\% \(\beta^-\):
 \(E < 156 \text{ keV}\)

\[8 \text{ kBq}/80 \text{ kg} = 100\text{ disintegrations /s/kg}\]
How to detect WIMPs?

A particle interacting in matter can create:

- **Ionization**: Creation of electrical charges
- **Scintillation**: Emission of light
- **Phonons**: Generation of heat → calorimetry

- **3 different channels**
- **Combinations → particle identification**
 - Dominant radioactive background (β, γ) highly ionizing (interacts with e^- in matter)
 - WIMPs, and fast neutrons, scatter elastically off nuclei
How to detect WIMPs?

A particle interacting in matter can create:

- **Ionization**: Creation of electrical charges
- **Scintillation**: Emission of light
- **Phonons**: Generation of heat → calorimetry

- **3 different channels**
- **Combinations → particle identification**
 - Dominant radioactive background (β, γ) highly ionizing (interacts with e^- in matter)
 - WIMPs, and fast neutrons, scatter elastically off nuclei

- KIMS: CsI
- DAMA/LIBRA, DM-Ice, ANAIS, SABRE: NaI
- DEAP: Ar
- XMASS: Xe

- PANDAX, Xenon, LUX: Xe
- ArDM, DarkSide: Ar
- CRESST: CaWO$_4$
- ROSEBUD: BGO, Al$_2$O$_3$...
- EURECA

- CoGeNT, MaLBEEK, TEXONO, CDEX: Ge
- CDMS, EDELWEISS: Ge
- EURECA
- CUORE: TeO$_2$

- + PICASSO, COUPP, PICO, SIMPLE, MOSCAB, MIMAC, DRIFT, DMTPC, DAMIC ...
2010-2013: The Low-Mass Mess

- 4 independent experiments observe “hints” of signal, at low masses
- Different statistical strengths
- Under standard astro and particle assumptions:
 - Not all compatible with one another
 - Already tension with XENON (and CDMS, EDELWEISS)
Clarifying low-masses

- Spherical gaseous TPC:
 - **SEDINE** → see I. Giomataris' talk

- CCD:
 - **DAMIC 100**: 18x5.5=110 g of Si CCDs, threshold 50 eVee ~ 0.5 keVr, to SNOLAB 2014, goal: to test CDMS-Si in 1 year exposure

- Semiconductor, ionization-only detector:
 - **CoGeNT, MALBEK**
 - **TEXONO, CDEX**:
 - 170 eVee threshold
 - 20 g, 0.8 kg.d

- Cryogenic
 - **CRESST**
 - **ROSEBUD**
 - **EDELWEISS**
 - **CDMS, CDMSLite** → see J. Billard’s talk
An ancestor of cryogenic detectors: calorimetry to measure radioactivity

\[\Delta T = 1.5\pm0.01 \, ^\circ\text{C} \]

- Large heat released by Ra:
 - Not compatible with chemical processes
 - Evidence for radioactivity

- Calorimetry: use temperature to measure energy: \(\Delta T = E/C \)

Sensitivity:
\[
P = 14 \text{ petites calories/h} = 60 \, \text{J/h} = 16 \, \text{mW}
\]
Basic Principle of Cryogenic Calorimetry

Absorber:
Heat capacity C
Temperature T

Thermal link
Thermal resistance R
(th. conductance G)

Heat sink, T_0
Basic Principle of Cryogenic Calorimetry

- If no thermal link, T steps up by E/C
- Thermal link allows relaxation back to T_0: $T(t)-T_0 = \frac{E}{C} e^{-t/RC}$

A particle deposits energy E in absorber

Absorber: Heat capacity C
Temperature T

Thermal link
Thermal resistance R (th. conductance G)

Heat sink, T_0

→ Excellent threshold and resolution ... at $O(10 \text{ mK})$ temperatures
Reducing the Haystack:

Cryogenic Scintillation: CRESST/ROSEBUD/EURECA

- Phonon-scintillation detectors
 - Scintillating cryogenic detector
 - Light collector

- Particle identification!
 - Choice of nuclei (CaWO$_4$, BGO, CaF$_2$, ...)

Electron, Photon and Neutron Calibrations

Electron Recoils
- β,γ induced
 - $^{90}\text{Sr, }^{57}\text{Co}$

Nuclear Recoils
- n induced
 - $^{A\text{B}}\text{Ba}$
Detector modules: CaWO$_4$, 300 g

- 8 modules → 730 kg.d

- 67 events remain in signal region

- Known backgrounds account for ~40

- Contribution from WIMPs could explain spectrum

- Clamps suspected as a source of BG (see also Kuzniak et al, Astropart Phys 36 77 2012)

- One 249 g, CaWO$_4$ module, lower BG crystal, new clamps

- 29 kg.d exposure: rules out all of O-claim, most of Ca-claim

- Total of 18 modules of various designs running currently
Reducing the Haystack: Ionization-Phonon Detectors

(T. Shutt et al. PRL 69 3425 1992, L. Bergé et al. NPB 70 69 1999)

- Phonon signal: $\Delta T/T \approx 0.1\%$ over ms

Diagram:
- Heat sink ($T \approx 10$ mK)
- Thermometer $R(T)$
- Absorber (ex: Ge, 100g)
- Phonons
- Holes
- Recoil ($E_{\text{rec}} \approx 10$ keV)
- Incoming particle ($m \approx 10$ GeV, $E_{\text{kin}} \approx 50$ keV)
Reducing the Haystack: Ionization-Phonon Detectors

(T. Shutt et al. PRL 69 3425 1992, L. Bergé et al. NPB 70 69 1999)

- Phonon signal: $\Delta T/T \approx 0.1\%$ over ms
- Charge signal: ≈ 1000 pairs over μs

Heat sink ($T \approx 10$ mK)

Thermometer $R(T)$

Phonons

Absorber (ex: Ge, 100g)

Recoil ($E_{\text{rec}} \approx 10$ keV)

Electrodes

Incoming particle ($m \approx 10$ GeV, $E_{\text{kin}} \approx 50$ keV)
Reducing the Haystack: Ionization-Phonon Detectors

- **Phonon signal**: $\Delta T/T \approx 0.1\%$ over ms
- **Charge signal**: ≈ 1000 pairs over μs
- β,γ particles ionize more than WIMPs, neutrons

→ Event by event background rejection

Heat sink ($T \approx 10$ mK)

Thermometer $R(T)$

Phonons

Electrodes

Incoming particle ($m \approx 10$ GeV, $E_{\text{kin}} \approx 50$ keV)

Absorber (ex: Ge, 100g)

Recoil ($E_{\text{rec}} \approx 10$ keV)

(U)

(T. Shutt et al. PRL 69 3425 1992, L. Bergé et al. NPB 70 69 1999)
Luke-Neganov effect in CDMSLite:
Use phonons to read charge

- Bias a standard SuperCDMS 600 g iZIP detector at 69 V (rather than 4 V)
- As charges drift in electric field, work done on them by electric field leads to spontaneous emission of ballistic phonons
- Phonon amplification proportional to charge, bias voltage (CDMSLite: x24 for gammas)

- Exposure 6.3 kg.d
 - Excellent threshold (170 eVee ie 840 eVnr on Ge), resolution (1σ 43 eVee @ 1.3 keVee)
 - Loss of background discrimination
 - BG diluted with respect to signal

![Graph showing charge vs. energy for detectors at different biases](image)

(n activation → K and L shell captures of 71Ge visible)
Low-threshold unblinded results

- $6.1^{+1.1}_{-0.8}$ evts expected
- 11 observed, including 3 at high energy from T5Z3 (with malfunctioning guard electrode)

95% confidence contours for expected signal from 5, 7, 10 & 15 GeV/c2 WIMPs
EDELWEISS III @ LSM

arXiv:1207.1815v1, Scorza AP 2014

- Ionization-phonon technology similar to CDMS
 - Phonons: NTD vs TES
 - Charge: fuller interleaved electrode coverage
- Currently running:
 - 36 modules, 800 g each
 - Improved cryogenics, shielding, DAQ
- 500 kg.d and counting

Interleaved electrodes on all surfaces → ID of surface events + good fiducial volume
After the dust has settled: exploring towards lower masses

- Hints all but ruled out by new constraints (with little or no model-dependence in the case of CDMS-CoGeNT and CRESST-CRESST)

- Note also XENON, LUX
SuperCDMS @ SNOLAB

- Deeper, cleaner site to reduce BG
- Larger, cleaner experiment
 - 110 kg payload of improved detectors
 - Std: 92 kg Ge, 11 kg Si
 - Lite: 5 kg Ge, 1.2 kg Si
 - Cryostat will have room for 200 kg

- 3.4 M$ CDN received from CFI, contingent on US funding...
- Selected by DOE G2 process ... waiting for ~20 M$
- Discussions with EURECA (CRESST+EDELWEISS) for collaboration
- Data-taking could start 2018

Excellent low-mass reach
(5 yr exposure)
High-mass searches

- **Xe**
 - XENON → E. Aprile's talk
 - PANDA → K. Giboni's talk
 - LUX
 - XMASS

- **Ar**
 - DARKSIDE → P. Agnes' talk
 - DEAP
 - ArDM
 - WArP
Noble Liquids: Discrimination & Mass

<table>
<thead>
<tr>
<th>A</th>
<th>39.9</th>
<th>131.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling point (K)</td>
<td>87</td>
<td>165</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>1.4</td>
<td>2.9</td>
</tr>
<tr>
<td>Discrimination</td>
<td>S1/S2, S1 PSD</td>
<td>S1/S2</td>
</tr>
<tr>
<td>Radioactive isotopes</td>
<td>39Ar</td>
<td></td>
</tr>
<tr>
<td>DM projects & experiments</td>
<td>WArP, ArDM, DEAP, CLEAN</td>
<td>XENON, XMASS, LUX, PANDAX</td>
</tr>
</tbody>
</table>

Single phase (XMASS, DEAP, CLEAN)

Dual phase TPC (XENON, LUX, PANDAX, ArDM, DarkSide)

- PSD much better in Ar than Xe
- Position reconstruction better in dual phase (~mm) than single phase (~cm)

>10⁸

Figs. L Grandi, INFN Pavia (WArP)
XENON 100 @ Gran Sasso
(Aprile, arXiv:1207.3458)

- Dual-phase, 165 kg (35 kg fiducial) Xenon TPC

- Rapid progress and impressive **world-leading** (until 2013) results...

- ...despite mundane gamma, beta BG rejection ("only" 98.75% for acceptance 20-60%)

- Clean, and powerful self-shielding, fiducial volume cut

- Currently amassing data:
 - Lower masses
 - Modulation study
 - Demo for 1T: BG, calibrations...
1 m- drift dual-phase XeTPC filled with ~3.3 tonnes of ultra-pure LXe

Designed to enable a fast detector’s upgrade to ~7 tonnes Xe target in 2018

Detector & support systems based largely on proven (XENON100) technologies

New 3 inch low-activity PMTs developed for XENON1T: average QE~34%

Detector shielded by water Cherenkov muon veto

Background goal: 100 x lower than XENON100, ~5 x 10^-2 events/(t-d-keV)

Under construction in Hall B - commissioning of cryogenic plants ongoing

TPC commissioning in late Spring 2015. Expect first science run by Fall 2015

Science Goal: 2 x 10^-47 cm^2 for 50 GeV WIMP with 2 ton x yr data (2017)
LUX @ SURF* (2013)

- Fiducial mass: 118 kg
- Livetime: 83 d
- After BG rejection:
 - 160 evts (!)
 - Compatible with leakage from electron recoils
- **Leading field**
- Exploring new parameter space
- **Status:**
 - Calibrating at low E to reduce threshold in 2013 data
 - Starting a low BG 300 d run improve sensitivity by factor <4
 - LZ, 7-ton fiducial, DOE G2 approved

Incompatible with all hints for signal from other expt (under std assumptions)

Sanford Underground Research Facility
DEAP-3600 Dark Matter Search at SNOLAB

Project Overview

3.6 tonnes liquid argon in ultraclean acrylic vessel, 255 8-inch HQE PMTs

1 tonne fiducial mass designed for < 0.2 background events/year

10-46 cm² sensitivity for ~100-GeV WIMP with 3-year exposure

Project Timeline

Turn-on PMT systems Nov/Dec ‘14

Argon gas runs and in-situ background measurements, commissioning Dec ’14/ Jan ‘15

Physics Data start Early 2015

Future Project

Planning for development of future 50-tonne argon experiment (photo-detector development, low-background argon and engineering proposal)

Projection

Courtesy M Boulay
DEAP-3600 Detector at SNOLAB

Completed inner detector
255 8” R5912HQE PMTs
installed in water shield tank

Steel Containment Sphere
in 8m diameter water shield tank
DEAP-50T: Follow-up with 50-tonnes of liquid argon (Development Proposal)

150-tonnes DAr in AV
50-tonne fiducial

Sensitivity 10^{-48} cm2

Development

- photodetector development
- background reduction
- engineering and safety
- storage and screening of Low-Radioactivity Argon
Prospects for the Field

“Toute action de l'esprit est aisée si elle n'est pas soumise au réel” M. Proust

Coherent neutrino scattering background from Sun, atmosphere, SN

Fig Cushman/Snowmass
How to convincingly discover WIMPs?

- Large detector mass seems necessary to see hints of WIMPs
- Annual/diurnal modulation signatures not water-tight, especially if there is background, but useful (MIMAC → Q. Riffard, T-REX → F. J. Iguaz Gutierrez, NEWAGE → K. Miuchi, DRIFT, DMTPC ...)
- Need particle identification (not necessary for a limit)
- WIMP conundrum:
 - Most signal expected near threshold...
 - ... but threshold is where particle identification usually falters and where new backgrounds appear
 → Good understanding of threshold is paramount
- Mix targets, technologies and sites to understand backgrounds and systematics
- Too much fine-tuning of astrophysical and particle assumptions detrimental to credibility
- Now-discredited low-mass hints shows nothing will be easy
- Be open with data and in discussions
Misc

- SD Sector: PICO, SIMPLE
- Proposals/projects to investigate DAMA:
 - DM-Ice
 - SABRE
 - KIMS-NaI
 - ANAIS
 - Cryogenic detectors?
At Gran Sasso, since mid-1990s

From 100 to 250 kg of NaI:Tl, over a dozen years

Ultra-pure detectors and environment

Total exposure ~1.2 T.y

Threshold 2 keVee, ie:
- ~6 keV recoil for Na
- ~20 keV recoil for I

Module: trigger on coincidence between PMTs (see ~ 6 pe/keVee)

Self-shielding: reject coincidences between modules
DAMA Results

- **Significant annual modulation observed (>7σ)**
 - December - June
 - \[V_{\text{Earth/Galaxy}} \approx 220 - 250 \text{ km/s} \]
 - Recoil spectrum modulated:
 - 2-6 keV

- **Interpretation not straightforward:**
 - No particle identification (no pulse shape discrimination at low energies)
 - Many things have an annual modulation, eg:
 - Selvi, LVD, Muons at Gran Sasso
 - Many things have annual modulation → μ-induced fluorescence (Nygren 2011)?
“Standard” interpretation of DAMA results in conflict with many other experiments

Similar scintillation-only expts:
- KIMS (CsI:Tl)
- NaIAD, ANAIS, SABRE ... (NaI:Tl)
- DM-Ice (NaI:Tl at South Pole)

- Southern hemisphere → WIMPs would have same phase, season would have opposite
- Leverage shielding, know-how and DAQ from IceCube
- Tests with 2 old crystals from NAIAD (total m 17 kg)
- Bonus: light yield of NaI:Tl increases around -30 °
- Extra challenge: procuring radiopure NaI
DM-Ice

Objectives

- Directly test DAMA’s observation, definitive probe of longest standing DM claim
- Test assertion that the observed signal is due to dark matter & understand its origin

Key Features

- NaI(Tl) target
- only experiment with access to both Northern & Southern Hemispheres

DM-Ice17

Operating continuously since 2011
17 kg of NaI(Tl) at 2450m depth at South Pole, analysis ongoing

Northern Hemisphere Run
Portable 250 kg NaI(Tl) detector
Tests the null hypothesis & study possible sources of modulation

Deployment at South Pole
Definitive testing if signal observed independently from DAMA.

DM-Ice 250 North

DM-Ice 250 South

500 kg·years
(2 - 4 keV) with 1, 2, and 5 dru background (DAMA has ~1 dru)

Current BG in ROI 30 times > DAMA (more ^{40}K, no veto)

 Courtesy R Maruyama

PRD 90 (2014) 092005

Astropart.Phys. 35 (2012) 749-754
SABRE: Sodium Iodide with Active Background REjection

Goal: Definitive test of DAMA by using
- Ultra high purity powder and clean growing methods to obtain ultra pure NaI(Tl) crystals
- Low radioactive high Q.E. PMTs without light guide to achieve high light yield and low energy threshold
- Active liquid scintillator veto to reject 40K and other backgrounds

DarkSide veto (LNGS)
- 4m diameter liquid scintillator veto shielded by >3-4 m of water
- 1st NaI(Tl) detector background test in prep

Portable SABRE veto
- 1.5m x 1.5m cylinder
- Currently under construction
- Possible locations: SNOlab, LNGS, Australia
SABRE: Sodium Iodide with Active Background REjection

Status:
- NaI powder: K \sim 10 \text{ ppb}; U, Th <1 \text{ ppt}; Rb \sim 0.2 \text{ ppb}
- NaI(Tl) crystals:
 - Small high purity crystal grown (impurity levels same as powder)
 - Large (3'' dia.) standard purity crystal grown using high purity techniques
 - Large high purity crystal growth in preparation
- NaI(Tl) property study:
 - Measurement of Na quenching factor down to 6 keV nuclear recoil
 - Pulse shape discrimination down to \sim 6 keV nuclear recoil

Outlook:
- Improve NaI powder purity by zone refining and improved production technique
- Improve NaI(Tl) crystal growth and processing
- Improve detector packaging with optimized optical coupling, lower humidity levels and lower contamination
- 50-kg array with background of 0.1 cpd/kg/keV, indicated by current powder/crystal tests, provides 4-sigma evidence for or against the DAMA dark matter claim in 3-year run.

Expected SABRE background
Assuming same impurity levels as in powder
Cryogenic Detectors to Test DAMA?

- mK phonon + scintillation readout à la CRESST
- R&D on NaI at low T:
 - Spectra, coatings vs hygroscopicity: Coron et al, EPJ Web of Conferences 65, 02001 (2014)
 - Alpha, gamma light yields: Nadeau PhD, in preparation
- Phonon channel a challenge (Schäffner et al, J Low Temp Phys (2012) 167:1075-1080 10 keV resolution in CsI)
 - Low Debye T
 - Hygroscopicity
- Potential payoff:
 - Less astro, particle dependence
 - Particle identification

- Sensitivity assuming phonon performance improved to current CRESST level:

- With BG rejection
 - Small mass sufficient
 - Modulation analysis also goes faster (for a given mass)
Superheated detectors at SNOLAB
- PICASSO (114 kg.d): \(\text{C}_4\text{F}_{10} \) droplets
- COUPP (553 kg.d): \(\text{CF}_3\text{I} \) bubble chamber

Also MOSCAB condensation chamber

Detect bubbles with piezoelectric sensors (and cameras for COUPP)

Insensitive to \(\beta, \gamma \)

Identification of \(\alpha \) also possible thanks to acoustic signature (Aubin NJP 2008)

Geared towards SD, light WIMPs

PICO 2L:
- Similar to COUPP, but with \(\text{C}_3\text{F}_8 \)
- Being installed at SNOLAB

Future: PICO 250L
Direct Dark Matter Searches

- Post-Higgs, astrophysics and particle physics still faced with dual challenge
 - Dark matter?
 - Physics beyond standard model?
- Significant progress over past decade (sensitivity $x10^3$), fueled by improvements in detector technology
- As SUSY has waned, interest has expanded to low masses (though full GeV-TeV range still possible):
 - **No confirmed signal!**
- Complementary mix of targets and technologies required to validate any discovery