Search for Hidden Particles with SPS

Oleg Ruchayskiy

oleg.ruchayskiy@epfl.ch

SHiP
Search for Hidden Particles
Structure of the Standard Models

In the past the structure of the Standard Model was giving us hints where to expect new physics

We were searching for the particles without which our explanation of all the previous experiments would become inconsistent

- We knew that something shall be found at energies below $E < G_{\text{Fermi}}^{-1/2}$
- Without the top quark the Standard Model would be non-unitary
- Without the Higgs boson the Standard Model would be non-unitary

Higgs boson

Higgs boson was the last predicted but unseen particle

- Did century long quest come to its end?
- Where do we need to look for something else?
Standard Model is consistent up to very high scales

![Graph showing the consistency of the Standard Model up to very high scales.](image)

“It is expected that the difference between the MC mass definition and the formal pole mass of the top quark is up to the order of 1 GeV” (from *First combination of Tevatron and LHC measurements of the top-quark mass* [1403.4427]

Bezrukov et al. “Higgs boson mass and new physics” [1205.2893]

Degrassi et al. [1205.6497], Buttazzo et al. [1307.3536]
Should we believe that new particles exist?
Neutrino masses and oscillations
What makes neutrinos disappear and then re-appear in a different form? Why they have mass?
- Neutrino oscillations do not tell us what is the scale of new physics
- It can be anywhere between sub-eV and 10^{15} GeV (like $M_W < G_F^{-1/2}$)

Baryon asymmetry of the Universe
what had created tiny matter-antimatter disbalance in the early Universe?
- Particles as light as 1 MeV or as heavy as 10^{12} GeV can be responsible for this

Dark matter
What is the most prevalent kind of matter in our Universe?
- Physics at high scales (10^{12} GeV for axions), at intermediate scales (TeV for WIMPs) or at low scales (keV-ish sterile neutrino, physics below electroweak scale) can be responsible for this
Question about the evolution of the Universe as a whole

Cosmological inflation:
What was driving the accelerated expansion of the universe during the early stages of its evolution? (possibly Higgs field)

Dark Energy:
What drives the accelerated expansion of the universe now (possibly this is just Λ-term)

Deep theoretical questions
- Strong CP problem
- Why Planck scale 10^{19} GeV is much higher than the electroweak scale (100 GeV)?
- What is the theory of quantum gravity?

(Fundamental questions, but it is possible to be agnostic about them for quantitative description of what was observed so far)
Unsolved problems mean that new particles should exist.

We did not detect them because

- they are heavy
- OR
- they are light but very weakly interacting
Heavy particles: active LHC searches

CMS Preliminary

- **Heavy Gauge Bosons**
 - SSM $Z'(\tau\tau)$
 - SSM $Z'(\tau\mu)$
 - SSM $Z'(\mu\mu)$
 - SSM $W'(j\ell)$
 - SSM $W'(Z\tau\rightarrow l\nu l\nu)$
 - SSM $W'(WZ\rightarrow 4j)$

- **Leptoquarks**
 - LQ1(ej) x2
 - LQ1(ej)+LQ1(vj)
 - LQ2(\mu j) x2
 - LQ2(\mu j)+LQ2(vj)
 - LQ3(vb) x2
 - LQ3(tb) x2
 - LQ3(\tau j) x2
 - LQ3(vj) x2

- **RS Gravitons**
 - RS1(\gamma\gamma), k=0.1
 - RS1(\gamma\gamma, uu), k=0.1
 - RS1(\gamma\gamma, jj), k=0.1
 - RS1(WW\rightarrow 4j), k=0.1

- **Long-Lived Particles**
 - stopped gluino (cloud)
 - stopped stop (cloud)
 - HSCP gluino (cloud)
 - HSCP stop (cloud)
 - q=2/3e HSCP
 - q=3e HSCP

- **Dark Matter**
 - neutralino, ctau=25cm, ECAL time

- **Excited Fermions**
 - $e^*(M=\Lambda)$
 - $\mu^*(M=\Lambda)$
 - $q^*(M=g)$
 - $q^*(M=q)$
 - b^*

- **Multijet Resonances**
 - coloron(jj) x2
 - coloron(4j) x2
 - gluino(3j) x2
 - gluino(4j) x2

- **Large Extra Dimensions**
 - ADD ($\gamma\gamma$), nED=4, MS
 - ADD (ee, $\mu\mu$), nED=4, MS
 - ADD (j+MET), nED=4, MD
 - ADD (y+MET), nED=4, MD
 - QBH, nED=4, MD=4 TeV
 - NR BH, nED=4, MD=4 TeV
 - Jet Extinction Scale
 - String Scale (j)

- **Compositeness**
 - dijets, $\Lambda_+ LL/RR$
 - dijets, $\Lambda_+ LL/RR$
 - dimuons, $\Lambda_+ LLIM$
 - dimuons, $\Lambda_+ LLIM$
 - dielectrons, $\Lambda_+ LLIM$
 - dimuons, $\Lambda_+ LLIM$
 - single e, $\Lambda HnCM$
 - single μ, $\Lambda HnCM$
 - inclusive jets, $\Lambda_+ inclusive jets$, Λ_-

Probed scale $\ll 10^{19}$ GeV

Oleg Ruchayskiy (EPFL)
December 16, 2014
SHiP physics 8 / 36
Intensity frontier searches for feebly interacting particles

Intensity frontier has been paid much less attention in the recent years:
- PS 191 (early 1980s)
- CHARM: 1980s
- NuTeV: 1990s
- DONUT: late 1990s – early 2000
Two possibilities exist

- Standard Model plus some light particles is valid up to very high energies. No new physics between Fermi and Planck scale

- There is a wider theory with a new energy scale (SUSY scale, GUT scale, extra dimensions, new strong dynamics, etc) but there are light particles in the spectrum
Complimentarity of energy & intensity frontier searches

Why some of the new particles can be light?

Example: **axion**

- Heavy fermions Ψ interact with a heavy scalar $\Phi = |\Phi|e^{i\theta}$
- The theory possesses $U(1)$ symmetry **spontaneously broken** at high energies $E \sim g_{\phi\gamma\gamma} \gg \text{TeV}$
- Spontaneously broken symmetry leaves behind a **Goldstone boson ϕ**
- If the symmetry was not exact these (pseudo)-Goldstone bosons will be massive. But generically light

Heavy fermions in the loops induce interactions between light particles:

$$L_{\text{axion}} = \frac{\phi}{g_{\phi\gamma\gamma}} F \tilde{F}$$
Why some SUSY particles can be light?

Gravitino

- Superpartner of graviton \Rightarrow Massless at tree level
- Roughly speaking

\[
m_{\text{gravitino}} = \left(\frac{\text{SUSY breaking scale}}{M_{\text{Planck}}}\right)^2 \ll \text{Other SUSY particles}
\]

Sgoldstino

- spontaneous SUSY breaking \Rightarrow the existence of spin 1/2 Goldstone particle \textit{goldstino}
- Superpartner to goldstino – \textit{Sgoldstino}
- Massless at tree level
- Mass via loop corrections
No new particles heavier than electroweak scale

All BSM puzzles are resolved with the particles lighter than EW scale

- **Neutrino oscillations:** particles N_2, N_3
- **Baryon asymmetry:** same particles N_2, N_3
 - masses $\mathcal{O}(100)$ MeV – $\mathcal{O}(80)$ GeV
- **Dark matter:** particle N_1
 - mass $1 – 50$ keV
- **Inflation:** Higgs field coupled to gravity
 - Inflationary parameters for $M_{\text{Higgs}} \sim 126$ GeV in perfect agreement with observations

Neutrino Minimal Standard Model (νMSM)
Masses of right-handed neutrinos as of other order of masses of other leptons
Yukawas as those of electron or smaller
SHiP (Search for Hidden Particles) experiment

http://ship.web.cern.ch/ship

- Take the highest Energy/Intensity proton beam of the world
- ...dump it into a target...
- ...followed by the closest, longest and widest possible and technically feasible decay tunnel!
SHiP detector

- **Aim**: background free detector
- **Any event would mean new particles**

Summary of different channels

<table>
<thead>
<tr>
<th>Generic decay modes</th>
<th>Final states</th>
<th>Models tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>meson and lepton</td>
<td>(\pi l, Kl, \rho l, l = (e, \mu, \nu))</td>
<td>(\nu) portal, HNL, SUSY neutralino</td>
</tr>
<tr>
<td>two leptons</td>
<td>(e^+e^-, \mu^+\mu^-)</td>
<td>V, S and A portals, SUSY s-goldstino</td>
</tr>
<tr>
<td>two mesons</td>
<td>(\pi^+\pi^-, K^+K^-)</td>
<td>V, S and A portals, SUSY s-goldstino</td>
</tr>
<tr>
<td>3 body</td>
<td>(l^+l^-)(\nu)</td>
<td>HNL, SUSY neutralino</td>
</tr>
</tbody>
</table>

- Can probe: neutrino, vector, scalar portals; axions; light SUSY particles
- Has designated \(\nu_\tau\) programme (For the first time there will be a high intensity neutrino flux with all three species of neutrinos and antineutrinos!)
SHiP collaboration

- SHiP collaboration has been **officially created yesterday in CERN**
- Technical proposal & physics case papers to be submitted to the SPS committee at the end of March 2015
- The designa and the science programme are not final yet!
 . . . Considering the large cost and complexity of the required beam infrastructure as well as the significant associated beam intensity, such a project should be designed as a general purpose beam dump facility with the broadest possible physics programme, including maximum reach in the investigation of the hidden sector
 (from SPS response to the SHiP’s expression of interest [1310.1762])
- Interested groups and interested people are welcome to join!
- SHiP Physics case mailing list: ship-theory@cern.ch
More physics with beam dump: Light dark matter

- Light (below $\sim \text{GeV}$) dark matter particles: fermions that couple to “dark photon” mesons $\rightarrow V' \rightarrow \chi \chi$
- Not probed with direct detection experiments
- Detection via scattering events in the detector

\[\chi \rightarrow \chi \rightarrow V \rightarrow \chi \chi \]

\[N \rightarrow N \]

χ—nucleon elastic

depth inelastic

sub-GeV dark matter can be searched at neutrino experiments
- at proton beam dumps — dedicated MiniBooNe run [1211.2258]
- electron beam dumps — Letter for Intent for JLab [1406.3028]

For more details see B.Batell talk at 2nd SHiP meeting
Can SPS do better?
Oh, yes!

Courtesy of Adam Ritz. Red dots (unpublished): estimate of SPS sensitivity.
Assumes that detector is 40 ton (e.g. LAr TPC)
How?
work in progress... Everyone is welcome to contribute!

Decay volume is evacuated, so no scattering

Scatter in the tracking chambers, or ECAL?
Scattering before the detector?
Veto...
Looks difficult...
Can a dedicated analysis be done?

Alternative: Put here dedicated detector???

- We are discussing this right now!
- Ideas (and people) are welcome

Slide from B. Batell’s talk at 2nd SHiP meeting
Possible signal of the keV-scale dark matter

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS

Esra Bulbul1,2, Maxim Markevitch2, Adam Foster1, Randall K. Smith1 Michael Loewenstein2, and Scott W. Randall1

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138.
2 NASA Goddard Space Flight Center, Greenbelt, MD, USA.

An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster

A. Boyarsky1, O. Ruchayskiy2, D. Iakubovskyi3,4 and J. Franse1,5

1 Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands
2 Ecole Polytechnique Fédérale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, Switzerland

PRL (2014) [1402.4119]

Energy: 3.5 keV. Statistical error for line position $\sim 30 - 50$ eV.

Lifetime: $\sim 10^{28}$ sec (uncertainty: factor ~ 3)

Possible origin: decay $\text{DM} \rightarrow \gamma + \nu$ (fermion) or $\text{DM} \rightarrow \gamma + \gamma$ (boson)
Many models could provide such a signal

What’s next?

XMM-Newton’s time allocation committee has just granted us 1.4 Mega-seconds (PI: A. Boyarsky)

This is 10% of the XMM’s annual observational budget!

...the panel recognised that a detection of the 3.5 keV line in Draco would be a spectacular discovery. Even the non-detection represents an important result since it will rule out the dark matter origin of the 3.5 keV line detected by several teams earlier this year. Overall, the panel felt that this observation can and will trigger a lot of discussion on this topic...
9 A Spectroscopic Search for Dark Matter

Overview

X-ray spectroscopic observations provide a unique probe of direct signatures of dark matter, such as a line of a hypothetical sterile neutrino in the ~ keV mass range. In the event that any candidate emission is detected in the 1 – 10 keV energy band, ASTRO-H SXS will offer the first opportunity to resolve its shape and distinguish it from plasma lines and instrumental effects. The significance of dark matter identification will be improved crucially if the line is detected from multiple sources with distinguishable differences in redshift and velocity dispersions. Plausible targets include nearby galaxy clusters, the Milky Way Galaxy, and dwarf spheroidal galaxies, many of which will be observed by SXS for other purposes.
Sterile neutrino and 3.5 keV line

- **Atmospheric** and **Solar** neutrino mass splitting \Rightarrow need two sterile neutrino
- Are they Dark matter? \Rightarrow No way! Very short lifetime
- Third sterile neutrino (N_1)? \Rightarrow Yes! Great dark matter particle! (its exact properties depend on two other sterile neutrinos N_2, N_3)
- SHiP can search these other two particles (N_2, N_3)
Conclusions

- Intensity frontier is an underexplored possibility to discover new particles, complimentary to LHC-like experiments
- SPS is the highest energy/intensity proton beam in the world
 90% of the SPS protons are not used!
- Such experiments may be the future of particle physics for some time
- Experiments like SHiP are capable to discover new particles expected from various phenomenological and theoretical directions
- Design and the science programme of a generic beam-dump experiment with the SPS beam is not final yet. We discuss it right now
 ⇒ there are many things that can be done
 ⇒ people are welcome to join!
- SHiP-like experiment has capability not only to constrain many interesting models, but also directly experimentally resolve three major BSM phenomena: neutrino masses, dark matter, origin of matte-antimatter asymmetry
Thank you for your attention
Timeframe

Next steps: schedule of the SHIP facility

A few milestones:

✓ Form SHIP collaboration → 15th December at 5 pm
✓ Technical proposal → 2015 Plan to submit TP by March 31

We expect CERN to decide on the strategy for the SHIP beam within a year after TP submission!

✓ Technical Design Report → 2018
✓ Construction and installation → 2018 – 2022
✓ Data taking and analysis of 2×10^{20} pot → 2023 - 2027
Current status

- Several other groups confirmed the existence of the line in the Perseus cluster [1411.0050] Milky Way center [1405.7943,1408.1699,1411.1758]
- Interpretation as Potassium emission line? (\({\text{K XVIII}} \) ion has transitions at 3.47 keV and 3.51 keV)
 - Impossible to give simultaneous explanation for Milky Way, Andromeda galaxy and Perseus cluster at the same time
- Non-observation from the outskirts of galaxy clusters (our original work, [1408.4115])
 - Does not contradict to DM interpretation: DM distribution is sharply peaked in the center
- Dwarf spheroidal galaxies? Perfect targets: dark, dense. Not enough sensitivity with the current data [1408.3531]
 - \(\Rightarrow \) Need more data!!
Current status

Signal from different object is consistent with **dark matter** interpretation.
Comparison of signal between the objects

The probability distribution function for the M31/GC flux ratio.

The probability distribution function for the Milky Way center/outskirts flux ratio.

1411.0311
Physics with neutrinos

For the first time there will be a high intensity neutrino flux with all three species of neutrinos and antineutrinos!

ν_τ physics with SHiP

- Previous observation of ν_τ charged current interactions
 - 9 events by DONUT not distinguishing among τ^+ and τ^- creation
 - 4 events by OPERA observing τ^- as the result on $\nu_\mu \rightarrow \nu_\tau$ neutrino oscillation
- With SHiP it will be possible
 - First detection of $\bar{\nu}_\tau$
 - Cross-section measurements (separate for ν_τ and $\bar{\nu}_\tau$)

Not only ν_τ: what could be done with ν_μ

- Structure functions (F_2, R and F_3) measurements
- Charm physics from neutrinos and anti-neutrinos charged-currents interaction
- ...much more (see SHiP physics paper)
Neutrino masses and oscillations

What makes neutrinos disappear and then re-appear in a different form? Why they have mass?

- Neutrino flavour oscillations tells us that there are quadratic mixings between different sorts of neutrino $\bar{\nu}_\alpha \nu_\beta$
 \Rightarrow neutrino is massive!
- Neutrino is a part of the left SU(2)-doublet $L = \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}$
- Neutrino mixing term is operator of dimension 5:

$$\bar{\nu}_\alpha^c \nu_\beta \rightarrow \frac{(\bar{L}_\alpha^c \cdot H) (L_\beta \cdot H)}{\Lambda} \quad \Lambda \sim \frac{\langle H \rangle^2}{m_{atm}} \sim 10^{15} \text{ GeV}$$
Neutrino oscillations do not tell us what is the scale of new physics

It can be **anywhere** between sub-eV and 10^{15} GeV (like $M_W < G_F^{-1/2}$)
Particle physics applied to the whole Universe was very successful in explanation of primordial abundance of elements, prediction of CMB, etc.

We live in the era of precision cosmology!

Since Dirac we know: physics is symmetric if one interchanges particles and antiparticles

Thermal equilibrium “does not remember” its history

Sakharov conditions: violation of Baryon number; violation of CP; deviation from thermal equilibrium

Even neutrinos are in equilibrium in the dense primordial plasma; there is no phase transition in the Standard Model with the current Higgs mass

⇒ we need new particles
Dark matter

What is the most prevalent kind of matter in our Universe?

Expected: $v(R) \propto \frac{1}{\sqrt{R}}$

Observed: $v(R) \approx \text{const}$

Expected: $\text{mass}_{\text{cluster}} = \sum \text{mass}_{\text{galaxies}}$

Observed: 10^2 times more mass confining ionized gas

Lensing signal (direct mass measurement) confirms other observations

Jeans instability turned tiny density fluctuations into all visible structures

Neutrinos (the only neutral, stable particles) cannot be dark matter

\Rightarrow need new particle!
Portals

For details see talk by Misha Shaposhnikov at 2nd SHiP meeting

Dimension GeV^2, Vector portal:

new particles are Abelian fields, A'_μ with the field strength $F'_\mu\nu$, that couple to the hypercharge field $F_{Y}^{\mu\nu}$ via

$$\mathcal{L}_{\text{Vector portal}} = \epsilon F'_\mu F'_\lambda F_{Y}^{\lambda\nu}$$

Dimension GeV^2, Scalar portal:

new particles are neutral singlet scalars, S_i that couple the Higgs field:

$$\mathcal{L}_{\text{Scalar portal}} = (\lambda_i S_i^2 + g_i S_i)(H^\dagger H)$$

Dimension $\text{GeV}^{5/2}$, Neutrino portal:

the singlet operators $(\bar{L}_\alpha \tilde{H})$ couple to new neutral singlet fermions N_I,