

7th symposium on large TPCs for low energy rare event detection

NEXT-generation HP Xe-TPCs for the NEXT-ββ0ν experiment

Diego Gonzalez Diaz for the NEXT collaboration

IS NEUTRINO MAJORANA OR DIRAC (-TYPE)?

Majorana

Keep it simple: reduce the degrees of freedom! Dirac

Keep it simple: respect analogy with charged leptons and conserve lepton number!

Baryogenesis

+non-thermal equilibrium.

- +CP violation sources.
- +sphaleron process.

Smallness of neutrino mass scale

+see-saw mechanism

How to answer?

Most promising way:

Study neutrino-less double beta decay (ββ0ν) for checking the Majorana hypothesis!

+Neutrino oscillations.

All neutrino flavors are massive!

"If it is (Majorana-type), it will happen (bb0v)"

+Black box theorem (Schechter-Valle, 1982):

"If it happens (bb0v), it is (Majorana-type)"

bonus

- Access to the neutrino mass scale
 - +Nuclear physics.
 - +Physics beyond SM.
 - +Accurate measurements.

Neutrino Experiment with a Xenon TPC

M. Pomorski et al., 'First observation of two-proton radioactivity in ⁴⁸Ni', Phys. Rev. C 83, 061303(R), 2011

Neutrino Experiment with a Xenon TPC

M. Pomorski et al., 'First observation of two-proton radioactivity in ⁴⁸Ni', Phys. Rev. C 83, 061303(R), 2011

Neutrino Experiment with a Xenon TPC

M. Pomorski et al., 'First observation of two-proton radioactivity in ⁴⁸Ni', Phys. Rev. C 83, 061303(R), 2011

The NEXT concept

Neutrino Experiment with a Xenon TPC

Neutrino Experiment with a Xenon TPC

Energy (keV)

Neutrino Experiment with a Xenon TPC

Neutrino Experiment with a Xenon TPC

NEXT-DBDM (in a nutshell)

LBL-Berkeley

- 1kg.
- 10-15bar, pure Xe.
- 64cm², light amplification (EL).
- 8cm drift.
- SiPM for tracking.
- PMT for T_0 and calorimetry.

0.5~%~FWHM extrapolated @ $Q_{\beta\beta}$

NEXT-DEMO (in a nutshell-I)

IFIC-Valencia

- 2.5kg.

NEXT-DEMO (in a nutshell-II)

NEXT-DEMO (in a nutshell-III)

some remarkable R&D results relative to fundamental properties of HP-Xenon (HP)

Pure

- Drift velocity and longitudinal diffusion.
- W_{exc} and W_{I} for γ -rays.
- W_{exc} and correlation scintillation-ionization for α -particles.
- Nuclear recoil quenching factors for scintillation and ionization. submitted

Mixtures

- Drift velocity, longitudinal and transverse coefficients for Xe-TMA.
- Light yields, recombination and Penning rates for Xe-TMA.
- EL yields for Xe-CH₄.
- Columnar recombination in Xe-TMA

t.b.p.

ongoing

→ ongoing

NEXT stage-I (NEWhite)

- NEXT-stage 1 (NEWhite):
 - NEW==NEXT-100 at scale 1:2.
 - 10-15 kg of 136 Xe (10-15bar).
 - 20% of sensors: 12 PMTs, 20 SiPMs boards.
- Objective:
 - Consolidate the project (now supported through the European Research Council (AdG)).
 - Validate the background model.
 - Characterize exhaustively the $\beta\beta2v^{136}$ Xe signal and extract the discrimination power of the 2-blob topological signal in Xenon gas.
- Construction and commissioning: 2014-2015.
- Data taking: 2015-2016.

In memoriam of James White

description and status of NEW

Quartz plate in the anode

Quartz plate TPB-coated on top of SiPM plane ('a la' Dark Side)

NEW important additions

New flat-cable feed-throughs

Idea: re-use as much materials as possible. Notable exceptions:

- 1) NEXT-100 vessel: already built.
- 2) Cathode and EL grids: TAMU or DarkSide.
- 3) Field cage and light tube to be re-built.
- 4) Copper end-caps to be re-built.

NEW installation

vessel, ICS and field-cage (just polyethylene) once assembled in Madrid. (will be un-mounted and cleaned at LSC during February)

Seismic platform + castle + re-casted lead bricks (thanks to OPERA), pedestal at LSC

- Gas purification and recovery (ready at LSC).
- Slow control ready.

NEW (external backgrounds)

to be suppressed by X1001

Anti-radon device approved by Canfranc (similar to the one used in LSM)

Ultra-sensitive Rn detector to be built at Zaragoza (Micromegas-based)

background model

signal efficiency + rejection ratios

Selection criterion	$0\nu\beta\beta$	$2\nu\beta\beta$	²⁰⁸ T1	²¹⁴ Bi	
Fiducial, single track $E \in [2.4, 2.5]$ MeV	0.4759	8.06×10^{-9}	2.83×10^{-5}	1.04×10^{-5}	
Track with 2 blobs	0.6851	0.6851	0.1141	0.105	
Energy ROI	0.8661	3.89×10^{-5}	0.150	0.457	
Total	0.2824	2.15×10^{-13}	4.9×10^{-7}	4.9×10^{-7}	

radiopurity campaign

Detector subsystem	Activi	ity (mBq)	Rejectio	on factor	$c (10^{-4}/(\text{keV kg yr}))$		
	²⁰⁸ T1	²¹⁴ Bi	²⁰⁸ Tl	²¹⁴ Bi	²⁰⁸ Tl	²¹⁴ Bi	
Pressure vessel							
Total	<194	<603	$1.0(3) \times 10^{-8}$	$1.0(5) \times 10^{-9}$	< 0.23	< 0.06	
Energy plane							
R11410-10 PMTs	15(8)	<58	$2.41(16) \times 10^{-7}$	$1.64(13) \times 10^{-7}$	0.43(2)	< 1.13	
Enclosures	< 0.36	<3.0	$1.48(12) \times 10^{-7}$	$1.05(10) \times 10^{-7}$	< 0.0063	< 0.038	
Sapphire windows	2.4(6)	<19	$4.2(2) \times 10^{-7}$	$3.9(2) \times 10^{-7}$	0.12(3)	< 0.89	
Support plate	< 0.57	<4.9	$2.01(14) \times 10^{-7}$	$7.0(8) \times 10^{-8}$	< 0.014	< 0.041	
Tracking plane							
Dice boards	1.5(2)	3(1)	$4.9(2) \times 10^{-7}$	$4.9(2) \times 10^{-7}$	0.088(12)	0.19(6)	
SiPMs	<5.3	<5.3	$4.9(2) \times 10^{-7}$	$4.9(2) \times 10^{-7}$	< 0.31	< 0.31	
Electric-field cage							
Barrel	<1	<8	$3.83(19) \times 10^{-7}$	$4.4(2) \times 10^{-7}$	< 0.05	< 0.4	
Shaping rings	< 0.4	<3.6	$3.83(19) \times 10^{-7}$	$4.4(2) \times 10^{-7}$	< 0.018	< 0.189	
Electrode rings	<1.5	<4.6	$3.83(19) \times 10^{-7}$	$4.4(2) \times 10^{-7}$	< 0.07	< 0.2	
Anode plate	0.16(3)	0.39(15)	$4.9(2) \times 10^{-7}$	$4.9(2) \times 10^{-7}$	0.009(2)	0.02(9)	
Shielding							
Outer (Pb)	2060(420)	21200(4200)	$1.0(5) \times 10^{-10}$	$1.0(5) \times 10^{-10}$	0.027(13)	0.25(14)	
Inner (Cu)	<13	<111	$1.08(10) \times 10^{-7}$	$5.3(7) \times 10^{-8}$	< 0.05	< 0.7	

Table 3: Background rate predicted for each subsystem of the NEXT-100 detector.

NEXT-100

Detector subsystem	²⁰⁸ Tl	²¹⁴ Bi	Total
Pressure vessel	< 0.23	< 0.06	< 0.29
Energy plane	< 0.57	< 2.10	< 2.67
Tracking plane	< 0.40	< 0.50	< 0.90
Electric-field cage	< 0.15	< 0.81	< 0.96
Inner shielding	< 0.05	< 0.7	< 0.75
Outer shielding	0.027(13)	0.25(14)	0.28(14)
Total	< 1.43	< 4.42	< 5.85

Table 4: Contribution of major subsystems to the expected background rate of NEXT-100, expressed in 10^{-4} counts keV $^{-1}$ kg $^{-1}$ yr $^{-1}$.

NEXT-100++/NEXT-1Ton

I. The perfect mixture?

(2 families identified)

Ia). Penning-Fluorescent

(2 candidate molecules identified)

- 1. Suitable for **Penning** transfer. Can potentially reduce Fano factor.
- 2. Strongly **fluorescent at higher** λ and self-transparent.
- 3. Able to **reduce electron diffusion** in gas.
- 4. Allows for **EL at lower field** due to low-lying TMA excited states.

(already presented at the symposium)

Ib). Low diffusion/light preserving

(6 candidate molecules identified)

- 1. Able to **reduce electron diffusion** in gas.
- 2. Light mechanisms unaffected.
 - a) **Highly transparent** to Xe-light.
 - b) Small quenching for S_1 and small fluctuations in EL.
- 3. Recombination small.

example: CH₄

First measurement of electroluminescence in Xe/CH₄ mixtures:

E/p (V/cm/torr) =		3.5		0.15	
	ER(%) ER(%) for 5.9 keV for 2458 keV		HV (kV) Scint. region	HV (kV) Drift region	
Xe	7,7	0,38			
Xe+0.5%CH ₄	8,3	0,41	7.98 @ 10 bar	114 @10 bar	
Xe+1%CH ₄	12,0	0,59	11.97 @ 15 bar	171 @15 bar	
Xe+2.2%CH ₄	27,0	1,32			

- Light quenching factor for 0.5%CH₄ should be around an acceptable x1/2 from the known quenching rates.
- Charge recombination unknown.
- Transparency ok.

estimated NEXT-100 background = 5ckky

Figure 6: Top Left: two electrons emitted in a $\beta\beta0\nu$ decay in the absence of magnetic field. Top right: a single (background) electron produced by the photoelectric interaction of a 2.45 MeV photon emitted in 214 Bi decays, interacting in the chamber. Bottom left: two electrons emitted in a $\beta\beta0\nu$ decay, turning into a double helix that originate in a common vertex, in a magnetic field of 0.5 T. Bottom right: a single background electron turning into a single helix in a magnetic field of 0.5 T.

An additional topological rejection factor of 1/10 would allow to operate NEXT-100 in background-free conditions (tantalizing!)

Figure 7: The BaTa concept.

pioneered by EXO!

NEXT will focus on in-situ tagging

(hence, we will make different mistakes)

conclusions and outlook

- Several HP-Xenon (1kg) TPCs successfully developed over last years and presently operational.
- EL-technique consolidated.
- The first stage of NEXT-100, NEW, will be deployed early 2015 at LSC. It will contain 10-15kg of 136 Xe and it will validate the background model and topological algorithms by surveying the $\beta\beta2\nu$ region.
- With present background estimates and reconstruction algorithms, NEXT-100, seems capable of exploring $\beta\beta0\nu$ down to 100 meV effective ν masses for a exposure of about 300 kg year, starting in 2016.
- With the energy resolution well under control (at the 0.5-0.7% level, $Q_{\beta\beta0}$) the main focus in the near future will be to improve the topological handles, by optimizing gas diffusion and event reconstruction.
- Ba-Tagging and B-field opportunities will be also studied.

The NEXT collaboration

IFIC (Valencia), U. Zaragoza, U. Santiago, U. Girona, U. Politécnica Valencia, U. A. Madrid

U. Coimbra, U. Aveiro

LBL, Texas A&M U., Iowa State U.

JINR (Dubna)

U. Antonio Nariño (Bogotá)

Grants: Consolider-2010 (Spain), ERC-ADG 2013 (EU)

NEXT-100 into the future

- EXO200 and KamLAND-Zen set current best limits on 136 Xe $\beta\beta0\nu$
 - Assume same background and energy resolution that currently measured
- NEXT-100 sensitivity to $m_{\beta\beta}$
 - Using estimation of background contamination and measurements of energy resolution with prototypes

Experiment	M (kg)	enrichment (%)	efficiency (%)	resolution (% FWHM)	b (10 ⁻³ ckky)	
EXO-200	110	81	52	3.9	1.5	
KamLAND-Zen	330	91	62	9.9	1.0	
NEXT-100	100	91	31	0.5–1.0	0.4–0.9	

12/16/2014

NEXT-100. Simulation

Complete Geant-4 MC simulation of detector and physics

- Main contamination (from Th, U chains): 208 Tl (γ ,2615 keV), 214 Bi (γ ,2448 keV).
- Simple cut analysis for recognizing a blob (more detailed analysis work soon).

 3.24×10^{-12}

 3.57×10^{-11}

0.311

0.315

 1.23×10^{-7}

 3.69×10^{-7}

 3.23×10^{-7}

 5.40×10^{-7}

ROI

12/16/2014

0.5% FWHM

1.0% FWHM

NEXT-stage I (NEWhite). Radiopurity

Most of the needed elements **already screened** for radiopurity:

PTFE, high-density polyethylene, copper, steel, lead, tracking plane (board, resistors, capacitors, solder paste, connectors), and PMTs.

Missing (already partially shielded): Cables, bolts, PMT cans

V. Alvarez et al., 'Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements', JINST 8 T01002(2013).

#	Material	Supplier	Technique	Unit	^{238}U	²²⁶ Ra	²³² Th	²²⁸ Th	²³⁵ U	⁴⁰ K	⁶⁰ Co	¹³⁷ Cs
	Shielding											
1	Pb	Cometa	GDMS	mBq/kg	0.37		0.073			< 0.31		
2	Pb	Mifer	GDMS	mBq/kg	< 1.2		< 0.41			0.31		
3	Pb	Mifer	GDMS	mBq/kg	0.33		0.10			1.2		
4	Pb	Tecnibusa	GDMS	mBq/kg	0.73		0.14			0.91		
5	Pb	Tecnibusa	Ge	mBq/kg	<94	< 2.0	< 3.8	<4.4	< 30	< 2.8	< 0.2	< 0.8
6	Pb	Tecnibusa	Ge	mBq/kg	<57	< 1.9	< 1.7	< 2.8	<22	< 1.7	< 0.1	< 0.5
7	Cu (ETP)	Sanmetal	GDMS	mBq/kg	< 0.062		< 0.020					
8	Cu (C10100)	Luvata (hot rolled)	GDMS	mBq/kg	< 0.012		< 0.0041			0.061		
9	Cu (C10100)	Luvata (cold rolled)	GDMS	mBq/kg	< 0.012		< 0.0041			0.091		
10	Cu (C10100)	Luvata (hot+cold rolled)	Ge	mBq/kg		<7.4	< 0.8	<4.3		<18	< 0.8	<1.2
	Vessel											
11	Ti	SMP	Ge	mBq/kg	<233	< 5.7	< 8.8	< 9.5	3.4 ± 1.0	<22	< 3.3	< 5.2
12	Ti	SMP	Ge	mBq/kg	<361	< 6.6	<11	<10	< 8.0	<15	<1.0	< 1.8
13	Ti	Ti Metal Supply	Ge	mBq/kg	<14	< 0.22	< 0.5	3.6 ± 0.2	0.43 ± 0.08	< 0.6	< 0.07	< 0.07
14	304L SS	Pfeiffer	Ge	mBq/kg		14.3 ± 2.8	9.7 ± 2.3	16.2±3.9	3.2 ± 1.1	<17	11.3 ± 2.7	<1.6
15	316Ti SS	Nironit, 10-mm-thick	Ge	mBq/kg	<21	< 0.57	< 0.59	< 0.54	< 0.74	< 0.96	2.8 ± 0.2	< 0.12
16	316Ti SS	Nironit, 15-mm-thick	Ge	mBq/kg	<25	< 0.46	< 0.69	< 0.88	< 0.75	<1.0	4.4 ± 0.3	< 0.17
17	316Ti SS	Nironit, 50-mm-thick	Ge	mBq/kg	67±22	< 1.7	2.1 ± 0.4	2.0 ± 0.7	2.4 ± 0.6	<2.5	4.2 ± 0.3	< 0.6
18	Inconel 625	Mecanizados Kanter	Ge	mBq/kg	< 120	< 1.9	< 3.4	< 3.2	<4.6	< 3.9	< 0.4	< 0.6
19	Inconel 718	Mecanizados Kanter	Ge	mBq/kg	309 ± 78	< 3.4	< 5.1	<4.4	15.0 ± 1.9	<13	<1.4	<1.3
	HV, EL components											
20	PEEK	Sanmetal	Ge	mBq/kg		36.3±4.3	14.9±5.3	11.0±2.4	< 7.8	8.3±3.0	<3.3	< 2.6
21	Polyethylene	IN2 Plastics	Ge	mBq/kg	<140	< 1.9	< 3.8	< 2.7	<1.0	< 8.9	< 0.5	< 0.5
22	Semitron ES225	Quadrant EPP	Ge	mBq/kg	< 101	<2.3	< 2.0	<1.8	1.8 ± 0.3	513±52	< 0.5	< 0.6
23	SMD resistor	Farnell	Ge	mBq/pc	2.3 ± 1.0	0.16 ± 0.03	0.30 ± 0.06	0.30 ± 0.05	< 0.05	0.19 ± 0.08	< 0.02	< 0.03
24	SM5D resistor	Finechem	Ge	mBq/pc	0.4 ± 0.2	0.022 ± 0.007	7 < 0.023	< 0.016	0.012 ± 0.003	50.17±0.07	< 0.005	< 0.005
	Energy, tracking planes											
25	Kapton-Cu PCB	LabCircuits	Ge	mBq/cm ²	< 0.26	< 0.014	< 0.012	< 0.008	< 0.002	< 0.040	< 0.002	< 0.002
26	Cuflon	Polyflon	Ge	mBq/kg	<33	<1.3	< 1.1	<1.1	< 0.6	4.8 ± 1.1	< 0.3	< 0.3
27	Bonding films	Polyflon	Ge	mBq/kg	1140 ± 300	487±23	79.8±6.6	66.0 ± 4.8	60.0±5.5	832 ± 87	<4.4	< 3.8
28	FFC/FCP connector	Hirose	Ge	mBq/pc	< 50	4.6 ± 0.7	6.5±1.2	6.4 ± 1.0	< 0.75	3.9 ± 1.4	< 0.2	< 0.5
29	P5K connector	Panasonic	Ge	mBq/pc	<42	6.0±0.9	9.5±1.7	9.4 ± 1.4	< 0.95	4.1±1.5	< 0.2	< 0.8

12/16/2014

NEXT-DEMO (track reconstruction)

NEXT-DEMO (energy correction)

V. Alvarez et al., 'Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment', JINST 8, P04002(2013) V. Alvarez et al., 'Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array', arXiv:1306.0471 [physics.ins-det]

12/16/2014

NEXT-DEMO (sensor calibration)

minimum bias PMT spectrum

SiPM spectrum (for the SiPM with highest charge) 37

Gas Purification and Recovery

- Purification Loop bought and Delivered
- Compressor will be delivered next month
- Hot getter delivered in January
- Emergency pneumatic valve in Madrid being welded
- Control Recovery cylinders and buckets ordered
- System will be assembled and commission in situ using hard pipes and orbital welding equipment rented from Swagelock
- Will have only 3 short flexible hoses 2 x 1/2" and 1 x 100mm ID about a foot long to go from seismic platform to the working platform
- Still missing:
 - 30m emergency expansion tank
 - Multi channel RGA with scripting software

NEW SLOW CONTROL (SOFTWARE)

There are 5 areas to control established for NEW.

The slow control programs are prepared to work in NEW, and now they are running to be debugged.

- · Control and monitor the PMT power supply.
- · Alarm if overcurrent occurs.
- Every day 2 reports are created with all measures (voltage and current), the interval time is set via control.
- Is connected with Grids High Voltage slow control and with Main slow control via TCP/IP protocol.

PMT HV (PMT power supply)

SENSORS

(Sensors (temperature & humidity), Pumps, RGA, Hot-Getter & Pressure regulator)

- Control and monitor the temperature and humidity sensors and pressure gauges.
- Alarm if temperature or pressure is out of the thresholds.
- Every day a report are created with all measurements.
- Send email to the shifter if problems happen. Is connected with PWR slow control and with Main slow control via TCP/IP protocol.

V. Álvarez - NEXT Collaboration meeting

