

7th SYMPOSIUM ON LARGE TPCs FOR LOW-ENERGY RARE EVENT DETECTION

Oliver Buchmueller, Imperial College London

DARK MATTER SEARCHES: COMPLEMENTARITY OF COLLIDER AND DIRECT DETECTION EXPERIMENTS

Landscape of Dark Matter Searches

Dark Matter Searches: Direct Detection vs Colliders

Direct Detection Experiments

DM-nucleus scattering

Collider Experiments

- Pair-production of DM
- missing energy signature

Monojet and Monophoto (plus E_T^{miss})

Monojet analyses better than direct detection?!

Claim [often made]: For low mass and the entire spin-dependent case monojet limits are stronger than direct detection limits!

Effective Field Theory (EFT) Interpretation

Example of considered operators:

$$O_V = rac{(ar{\chi} \gamma_\mu \chi) (ar{q} \gamma_\mu q)}{\Lambda^2}$$
 Vector operator, s-channel

$$\bar{q}$$
 g_q
 g_q
 \bar{q}
 $\bar{\chi}$

$$O_{AV} = -$$

 $\frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)}{\Lambda^{2}}$ Axial vector operator, s-channel

Assumption of EFT

If the operator (e.g. V or AV) mediator is suitably(!!) heavy it can be integrated out to obtain the effective V or AV contact operator. In this case (and only this case), the contact interaction scale Λ is related to the parameters entering the Lagrangian:

$$\Lambda = \frac{M_{mediator}}{\sqrt{g_q g_\chi}} \quad ({\rm re}$$

(relation in the full theory)

Validity of Effective Field Theory Limits

Recent work from OB, M.Dolan,C.McCabe: arXiv:1308.6799 → Compare Effective Field Theory (EFT) with Full Theory (FT)

Use vector and axial-vector mediators (e.g. Z') as example - scalar are similar in conclusion!

- Compare prediction of FT with EFT in $m_{med} m_{DM}$ plane. Three regions become visible:
- Region I: EFT and FT agree better then 20%> EFT is valid!
- Region II: EFT yields significant weaker limits then FT
 > EFT limits are too conservative!
- Region III: EFT yields significant stronger limits then FT
 > EFT limits are too aggressive!

Validity of Effective Field Theory Limits

Use vector and axial-vector mediators (e.g. Z') as example - scalar are similar in conclusion!

What those this imply on model-dependences of EFT limits?

müller

Look at EFT validity in m_{DM} – coupling* plane!

müller

Model-dependences of EFT limits

Look at EFT validity in m_{DM} – coupling* plane!

1. Region in which EFT is **NOT** valid

For this we calculate the minimum coupling

$$\sqrt{g_q g_\chi} = m_{med} / \Lambda_{CMS}$$

that the simplified model must have for the EFT limits to apply. This is defined by region I (i.e. better then 20% agreement of FT and EFT).

müller

Model-dependences of EFT limits

Look at EFT validity in m_{DM} – coupling* plane!

1. Region in which EFT is **NOT** valid 2. $M_{med} > \Gamma_{med}$ ALWAYS!

We also find that for all DM models the EFT is valid only IF the mass of the mediator is smaller than its width!

In the reaming part of the plot:

$$\sqrt{g_q g_\chi} > 2$$

a particle-like interpretation of the mediator is doubtful because of $M_{\rm med} < \Gamma_{\rm med}$!

See discussion about equation 3.5 in arXiv:1308.6799 for further details.

müller

Model-dependences of EFT limits

Look at EFT validity in m_{DM} – coupling* plane!

1. Region in which EFT is **NOT** valid 2. $M_{med} > \Gamma_{med}$ ALWAYS!

We also find that for all DM models the EFT is valid only IF the mass of the mediator is smaller than its width!

In the reaming part of the plot:

$$\sqrt{g_q g_\chi} > 2$$

a particle-like interpretation of the mediator is doubtful because of $M_{med} < \Gamma_{med}$!

See discussion about equation 3.5 in arXiv:1308.6799 for further details.

The observation that all DM theories for which the EFT is valid must have $m_{med} < \Gamma_{med}$ and the small class of models it applies in any case leads to the conclusion that the EFT only applies to a very (as in VERY) small class of DM models. EFT limits of monojet searches are therefore highly model-depended!

Imperial College					
ller					

GOING BEYOND THE EFT!

Minimal Simplified Dark Matter Model

 $(\Gamma_{med} \text{ can also be free as long} As \Gamma_{med} < M_{med})$

ection O. Buchmüller

Collider vs Direct Detection

Pircot detection O. Buchmüller

ç

(L:L)

S MC

Collider vs Direct Detection

²⁰ 2

Scalar and Pseudoscalar

21

O. Buchmüller

Direct detection

DM Searches: Collider vs.

Projections for Future Experiments: M_{med} vs M_{DM}

Based on work from : S. Malik, OB, M.Dolan, C.McCabe et al arXiV:1409.4075

Limits from 8 TeV monojet search and projected limits for 3 LHC scenarios:

- 13 TeV 30 fb⁻¹
- 14 TeV, 300 fb⁻¹
- 14 TeV, 3000 fb⁻¹

LUX 2013 limits and projected limits for LZ assuming 10 tonne-year exposure

Discovery reach accounting for coherent neutrino scattering

Projections for Future Experiments: σ vs M_{DM}

Direct Detection experiments and collider are complementary! They are probing different regions of the relevant parameter space!

Summary for most basic Mediator Interactions

... in a nutshell!

Basic Mediators						
<u>Vector</u> EWK like coupling (assumed equal to all leptons). Besides very low DM masses DD wins clearly over collider!	Axial-vector EWK like coupling (assumed equal to all leptons). DD and collider are equal in overall sensitivity but probe different regions of parameter space!					
<u>Scalar</u> Yukawa like coupling on SM side (mass based on SM side) DD and collider are equal in overall sensitivity but probe different regions of parameter space!	Pseudoscalar Yukawa like coupling on SM side (mass based on SM side) No limits from DD (only from indirect detection). Collider provides limits similar in sensitivity to scalar limits					

Summary for most basic Mediator Interactions

... in a nutshell!

Summary

Interpretation of collider based DM searches in the framework of EFT have limitations!

- > EFT limits are only applicable to a small class od DM models. Furthermore, these models must all have $\Gamma_{med} > M_{med}$ which makes an particle ansatz doubtful.
- A comparison of EFT limits with results of direct detection experiments in the SI/SD – M_{DM} plane is NOT an equal-footing comparison.
- IF(!) this form of comparison is used in the future the caveats that come along with EFT limits must be explicitly stated!
- Interpretation of DM searches in simplified models overcome many of the EFT shortcomings!
 - Characterizing monojet results with using m_{med}, m_{DM}, g, F_{med} captures all of the important properties relevant for collider searches.
 - The approach is similar to what has been successfully utilized for SUSY searches.
- This approach also provides a fair comparison with results of direct detection experiments!
 - Establishing the complementarity of the two type of searches becomes much easier!

Imperial College

Imperial C London	College			
üller				
rchm				

BACKUP

müller

Model-dependences of EFT limits

Look at EFT validity in m_{DM} – coupling* plane!

- 1. Region in which EFT is valid (20%)
- 2. Require compatibility with relic density

When exclude the region in which relic abundance is larger then the observed value of $\Omega_{\chi\chi}h^2 = 0.119$ only mediator masses above a few hundred GeV fulfill this.

müller

Model-dependences of EFT limits

small class of DM models!

What those this imply on model-dependences of EFT limits?

The observation that all DM theories for which the EFT is valid must have $m_{med} < \Gamma_{med}$ and the small class to models it applies in any case leads to the conclusion the EFT only applies to a very small class of DM models. EFT limits of monojet searches are therefore highly model-depended!

müller

Model-dependences of EFT limits

Look at EFT validity in m_{DM} – coupling* plane!

1. Region in which EFT is valid (20%)

- 2. Require compatibility with relic density
- 3. Require theory to be perturbative ($<4\pi$)

4. $m_{med} < \Gamma_{med} ALWAYS!$

We also find that for all DM models the EFT is valid only IF the mass of the mediator is smaller than its width !

In the reaming part of the plot:

$$\sqrt{g_q g_\chi} > 2$$

a particle-like interpretation of the mediator is doubtful because of $m_{med} < \Gamma_{med}$!

See discussion about equation 3.5 in arXiv:1308.6799 for further details.

Alternative Interpretation Ansatz: Simplified models

After three years of operation at the LHC the landscape for interpretation of searches has changed dramatically – new superior & modern approaches have replaced in many areas longstanding traditional ones (e.g. SUSY searches)

Alternative Interpretation Ansatz: Simplified models

Recent work from OB, M.Dolan, C.McCabe: arXiv:1308.6799 ➤ Compare Effective Field Theory (EFT) with Full Theory (FT)

The problem is governed by five variables:

- \succ Couplings g_q and g_χ
- \blacktriangleright Mediator mass m_{med} and mediator width Γ_{med}
- Dark matter candidate mass m_{DM}

Beyond EFT limits: Simplified models

Working out the complementarity between direct DM detection experiments and collider based DM searches!

EFT limits give the impression that monsjet searches outperform direct detection BUT EFT only applies a VERY small class of DM models.

Simplified model limits give a much better Account of the REAL complementarity and thus seem superior for a comparison.

Beyond EFT limits: Simplified models

Working out the complementarity between direct DM detection experiments and collider based DM searches!

EFT limits give the impression that monsjet searches outperform direct detection BUT EFT only applies a VERY small class of DM models.

Simplified model limits give a much better Account of the REAL complementarity and thus seem superior for a comparison.

Absolute Limits in simplified models

on O. Buchmüller

Would need to also characterize dependence on Γ_{med} and couplings. This could e.g. be done by defining some benchmark scenarios.

Would also need to look at other operators (of course). 36