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There might be physics beyond the SM 

> Why does the static electromagnetic dipole moment of the neutron vanish? 

 

    Why do the wave functions of the three quarks 

    exactly cancel out any observable  

    static charge distribution in the neutron? 

 

 

 

 

> This is related to a fundamental property of QCD: 

 

QCD allows for CP violation, if the quarks have non-zero masses. 

Why does QCD nevertheless conserve CP?  

 

 

http://www.lbl.gov/Science-Articles/Archive/sabl/2006/Oct/3.html 
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There might be physics beyond the SM 

> CP-conservation in QCD is a fine tuning issue:  
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There might be physics beyond the SM 

> CP-conservation in QCD is a fine tuning issue:  
 

F. Wilczek at “Vistas in Axion Physics”, Seattle, 26 April 2012 
(see http://www.int.washington.edu/talks/WorkShops/int_12_50W/People/Wilczek_F/Wilczek.pdf) 

 
The overall phase of the quark mass matrix is physically meaningful. 

In the minimal standard model, this phase is a free parameter, theoretically. 

Experimentally it is very small. 

This is the most striking unnaturality of the standard model, aside from the 

cosmological term. It does not seem susceptible of anthropic “explanation”. 

 

> The observable CP-violation in QCD is given by 

http://www.int.washington.edu/talks/WorkShops/int_12_50W/People/Wilczek_F/Wilczek.pdf
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This is the most striking unnaturality of the standard model, aside from the 

cosmological term. It does not seem susceptible of anthropic “explanation”. 

 

> The observable CP-violation in QCD is given by 
  

> Experimentally, |                         |< 10-9.  

 

A “fine-tuning” problem! 

 

 

http://www.int.washington.edu/talks/WorkShops/int_12_50W/People/Wilczek_F/Wilczek.pdf


Axel Lindner | ALPS II | 16 December 2014 |  Page 9 

The first WISP: introducing the axion 

> CP-conservation in QCD:  
 

A dynamic explanation predicts the axion, 

which couples very weakly to two photons. 
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> The QCD axion: light, neutral pseudoscalar boson. 

> The QCD axion: the light cousin of the 0.   

 Mass and the symmetry breaking scale fa are related: 

ma =  0.6eV · (107GeV / fa) 

 

 The coupling strength to photons is 

ga = α·g / (π·fa),  

where g is model dependent and O(1). 

Note: ga = α·g / (π·6·106GeV) · ma 

 

Properties of the axion 
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> The QCD axion: the light cousin of the 0.   

 Mass and the symmetry breaking scale fa are related: 

ma =  0.6eV · (107GeV / fa) 

 

 The coupling strength to photons is 

ga = α·g / (π·fa),  

where g is model dependent and O(1). 

Note: ga = α·g / (π·6·106GeV) · ma 

 

 The axion abundance in the universe is  

Ωa / Ωc  (fa / 1012GeV)7/6. 

 

fa < 1012GeV  

ma > μeV 

 

Properties of the axion 
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Weakly Interacting Slim Particles (WISPs): 

> Axions and  

axion-like particles  

ALPs, pseudoscalar or scalar bosons, 

m and g are not related by an f. 

 

> Hidden photons (neutral vector bosons) 

 

 

> Mini-charged particles 

 

 

 

 

> Chameleons (self-shielding scalars), massive gravity scalars 

More general: WISPy particles 
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> Axions, ALPs and other WISPs occur naturally in string theory inspired 

extensions of the standard model as components of a “hidden sector”. 

 

 

 

 

 

> Their weak interaction might be related to very heavy messenger 

particles. 

Thus WISPs may open up a  

window to particle physics at 

highest  energies. 

Such WISPs are expected by theory 

DOI: 10.1007/JHEP10(2012)146 

http://www.arxiv.org/abs/1206.0819v1 

DOI: 10.1007/JHEP06(2014)037  

http://arxiv.org/abs/arXiv:1403.5760 

http://dx.doi.org/10.1007/JHEP10(2012)146
http://dx.doi.org/10.1007/JHEP06(2014)037
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There is physics beyond the SM 

> Dark matter and dark energy: 

 

 

 

 

 

 

 

(Credit Queens Univ) 

http://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy/ 

Even if one neglects dark energy: 

85% of the matter is of unknown constituents.  

http://www.esa.int/For_Media/Photos/Highlights/Planck 
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There is physics beyond the SM 

> Dark matter and dark energy candidate constituents: 

 

 

 

 

 

 

 

(Credit Queens Univ) 

http://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy/ 

> Very weak interaction with SM matter 

> Very weak interaction among 

themselves 

> Stable on cosmological times 

> Non-relativistic 
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There is physics beyond the SM 

> Dark matter and dark energy candidate constituents: 

 

 

 

 

 

 

 

(Credit Queens Univ) 

http://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy/ 

> Very weak interaction with SM matter 

> Very weak interaction among 

themselves 

> Stable on cosmological times 

> Non-relativistic 

> Extremely lightweight scalar particle 
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> Why should one look for WISPs 

> Indications for WISPs 

> Searches 

> Photons-through-a-wall 

> Summary 

Outline 
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QCD axion range 

 

 

  

The big picture: ALPs 
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Excluded by astronomy (ass. ALP DM) 

 

 

 

  

  

  

Excluded by astrophysics / cosmology 

 

 

  

  

  

  

QCD axion range 

 

 

  

Excluded by WISP experiments 

 

 

The big picture: ALPs exclusions 
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Axions or ALPs being cold dark matter 
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Axions or ALPs being cold dark matter 

WISP hints from astrophysics   
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The big picture: ALPs 

Particular interesting: 

> ALP-photon couplings around 10-11GeV-1, masses below 1 meV. 

This can be probed by the next generation of experiments. 

DOI: 10.1016/j.dark.2012.10.008  

e-Print: arXiv:1210.5081 [hep-ph] 

QCD axion range 

Excluded by WISP experiments 

Excluded by astronomy (ass. ALP DM) 

Excluded by astrophysics / cosmology 

Axions or ALPs being cold dark matter 

WISP hints from astrophysics   

 

Sensitivity of next generation WISP exp. 

 

http://dx.doi.org/10.1016/j.dark.2012.10.008
http://arxiv.org/abs/arXiv:1210.5081
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The big picture: ALPs 
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Particular interesting: 

> ALP-photon couplings around 10-11GeV-1, masses below 1 meV. 

Physics at a scale of 105 TeV will be probed. 

 

ALP predictions from large volume scenarios 

of type IIB string theory.  
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Indications for a WISP world? 

Probe the transparency of the universe! 

> GeV photons have a mean free pathlength comparable to the size of the 

universe. 

> 100 GeV to TeV photons travel just about 100 Mpc,  

because they interact with extragalactic background light. 

 

 

 

 

 

 

 

 

 

 
M. Meyer, 7th Patras Workshop on Axions, WIMPs and WISPs, 2011 

Center of mass energy about 1 MeV! 
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Indications for a WISP world? 

Probe the transparency of the universe! 

> GeV photons have a mean free pathlength comparable to the size of the 

universe. 

> 100 GeV to TeV photons should travel just about 100 Mpc,  

because they should interact with extragalactic background light. 

 

 

 

 

 

 

 

 

 

 
M. Meyer, 7th Patras Workshop on Axions, WIMPs and WISPs, 2011 

Center of mass energy about 1 MeV! 
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Indications for a WISP world? 

However: 

> The expected propagation of TeV photons 

seems to be in conflict with observations: 

 

 

 

 

 

 

 

> If physics beyond the SM is involved,  

it shows up around the MeV scale! 

 

 

 

 

D. Horns, M. Meyer, JCAP 1202 (2012) 033  
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Indications for a WISP world? 

> Axion-like particles might explain the apparent transparency 

of the universe for TeV photons: 

 

 

 

 

 

 

 

M. Meyer, 7th Patras Workshop on Axions, WIMPs and WISPs, 2011 

TeV photons may 

“hide” as ALPs:  

compare the ALPS II 

experiment at DESY! 
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ALPs and cosmic TeV photons 

> Axion-like particles might explain the apparent transparency 

of the universe for TeV photons: 

 

         significance above 3.5 σ 

  

         ga 10-11GeV-1, ma < 10-7eV 

         have to be probed! 

 

 

M. Meyer, D. Horns, M. Raue,   

arXiv:1302.1208 [astro-ph.HE], Phys. Rev. D 87, 035027 (2013) 
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ALPs and cosmic TeV photons 

> New analysis including blazar spectra recorded by FERMI: 

          

 

 

 

 

> Significance about 12 σ! 

 

“While detailed tests of these scenarios versus our results will  

be presented elsewhere, our preliminary considerations thus  

favour the ALP convertion / reconvertion scenario for the  

explanation of the effect we observe.” 

  arXiv:1406.0239 [astro-ph.HE] 
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WISPs all around us? 

> If WISP exist, they are 

light enough to be  

produced in stars. 

> If WISP exist, they might 

influence stellar evolutions 

or show up at other 

astrophysics phenomena. 

 

> One should look for “new  

physics” at low energy 

scales! 
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WISPs all around us? 

> If WISP exist, they are 

light enough to be  

produced in stars. 

> If WISP exist, they might 

influence stellar evolutions 

or show up at other 

astrophysics phenomena. 

 

> One should look for “new  

physics” at low energy 

scales! 

 
arXiv:1307.2410 [astro-ph.SR]  

Temperature profile of the sun 
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More (vague) hints for ALPs? 

> Additional energy losses beyond SM physics in  

globular cluster stars and white dwarfs? 

> Indications for a Cosmic ALP background (CAB)? 

 

 

 

 

 

 

 

> There are allowed regions in parameter space where an ALP can 

simultaneously explain the gamma ray transparency, the cooling of HB 

stars, and the soft X-ray excess from Coma and be a subdominant 

contribution to CDM. 

Phenomenon ALP mass 

[eV] 
ALP- coupl. 

[GeV-1] 

Reference 

TeV transparency < 10-7 > 10-11 arXiv:1302.1208 [astro-ph.HE] 

Globular cluster 

stars (HB) 

< 104  5·10-11 arXiv:1406.6053 [astro-ph.SR] 

CAB (Coma Cluster) < 10-13 10-12 to 10-13 arXiv:1406.5188 [hep-ph] 

White dwarfs < 10-2 (gae  5·10-13) arXiv:1304.7652 [astro-ph.SR]  
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> Why should one look for WISPs 

> Indications for WISPs 

> Searches 

> Photons-through-a-wall 

> Summary 

Outline 
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> The QCD axion: the light cousin of the 0.  

 

> Therefore the Primakoff effect  

will also work for the axion! 

 

 

 

 

        

   

 

 

Properties of the axion 
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> The QCD axion: the light cousin of the 0.  

 

> Therefore the Primakoff effect  

will also work for the axion! 

 

 

 

 

> Axions could be produced (detected) 

by sending a light beam (them) 

through a magnetic field: 

       π0 / a    

    

 

 

Properties of the axion 
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> Basic idea: due to their very weak interaction WISPs may traverse any 

wall opaque to Standard Model constituents (except ν and gravitons). 

 WISP could transfer energy out of a shielded environment 

 WISP could convert back into detectable photons behind a shielding. 

> “Light-shining-through-a-wall” (LSW) 

 

 

 

 

Okun 1982, Skivie 1983, Ansel‘m 1985, Van Bibber et al. 1987 

Basics of WISP experiments (I) 

steel wall, cryostat,  

earth’s atmosphere,  

stellar body,  

intergalactic background light, 

 …. 
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Three kinds of WISP searches 

Weakly Interacting Slim Particles (WISPs) are searched for by 

 

> Purely laboratory experiments 

(“light-shining-through-walls”) 

optical photons, 

 

 

> Helioscopes 

(WISPs emitted by the sun), 

X-rays,  

 

 

> Haloscopes 

(looking for dark matter constituents), 

microwaves. 
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ga, J
P,  

m (estimation) 

flux·ga, J
(P),  

m (estimation) 

flux·ga, J
P, m 
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Dark matter 

candidates 

Possible DM 

candidates 

Dark matter 
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Three kinds of WISP searches 
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(looking for dark matter constituents), 
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Energy (mass) 

converted to photons, 

no scattering 

experiments possible 

for µeV WISPs 
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Three kinds of WISP searches 

Weakly Interacting Slim Particles (WISPs) are searched for by 

 

> Purely laboratory experiments 

(“light-shining-through-walls”) 

optical photons, 

 

 

> Helioscopes 

(WISPs emitted by the sun), 

X-rays,  

 

 

> Haloscopes 

(looking for dark matter constituents), 

microwaves. 

 

 

Make the 

WISPs yourself 

Rely on 

astrophysics 

Astrophysics 

+ cosmology  
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Three kinds of WISP searches 

Weakly Interacting Slim Particles (WISPs) are searched for by 

 

> Purely laboratory experiments 

(“light-shining-through-walls”) 

optical photons, 

 

 

> Helioscopes 

(WISPs emitted by the sun), 

X-rays,  

 

 

> Haloscopes 

(looking for dark matter constituents), 

microwaves. 

 

Monochromatic photons: 

resonant amplification 

Monochromatic photons: 

resonant amplification 
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WISP experiments worldwide 
An incomplete selection of (mostly) small-scale experiments: 

 Experiment Type Location Status 

ALPS II 
Laboratory 

experiments, 

 light-shining-

through-a-wall 

DESY preparation 

CROWS CERN finished 

OSQAR CERN running 

REAPR FNAL proposed 

CAST 

Helioscopes 

CERN running 

IAXO ? proposed 

SUMICO Tokyo finished (?) 

TSHIPS Hamburg finished 

ADMX 

Haloscope 

Seattle, NH running 

FUNK KIT Karlsruhe studies 

WISPDMX DESY in HH studies 
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> Why should one look for WISPs 

> Indications for WISPs 

> Searches 

> Photons-through-a-wall 

> Summary 

Outline 
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ALPS I at DESY in Hamburg 

Any Light Particle Search @ DESY: ALPS I 

 

 

 

 

 

  

Approved in 2007, concluded in 2010 
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ALPS I results 

laser hut HERA dipole detector 

3.5·1021 1/s < 10-3 1/s 

(PLB Vol. 689 (2010), 149, or http://arxiv.org/abs/1004.1313) 

> Unfortunately, no light was shining through the wall! 

 

 

 

 

 

 

 

 

 

> The most sensitive WISP search experiment in the laboratory (nearly). 
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2013: CERN microwave experiment 
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2014: OSQAR at CERN 

> With two LHC dipoles OSQAR has surpassed the ALPS I sensitivity. 

> No evidence for axion-like particles has been found  

(as expected from other exclusion limits).  

arXiv:1410.2566 [hep-ex] 

http://arxiv.org/abs/1410.2566
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The LSW challenge 

      Note:  

      the experiment measures g4! 

 

Hence the sensitivity of the experiment is to be increased by 1012! 

Improve the sensitivity by  

three orders of magnitude! 
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Prospects for  ALPS II @ DESY 
> Laser with optical cavity to recycle laser power,  

switch from 532 nm to 1064 nm,  
increase effective power from 1 to 150 kW. 

 
 
 

 

> Magnet: 
upgrade to 10+10 straightened HERA dipoles  
instead of ½+½ used for ALPS I. 
 

 

 

> Regeneration cavity to increase WISP-photon 
conversions, single photon counter  
(superconducting transition edge sensor). 
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The ALPS II reach 

Three orders of magnitude gain 

in ALP coupling and two orders 

of magnitude in HP mixing! 
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The ALPS II reach 

Three orders of magnitude gain 

in ALP coupling and two orders 

of magnitude in HP mixing! 
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ALPS II essentials: laser & optics 

 

ALPS I: 
basis of success was 

the optical resonator 

in front of the wall. 
 

 

> ALPS IIa 

 

 

 

 

 

 

 

Optical resonator to 

increase effective 

light flux by 

recycling the laser 

power 

Optical resonator to 

increase the conversion 

probability  

WISP→ 

First realization of a 23 year old proposal! 
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ALPS II is realized in stages 

 

ALPS I 

 

 

 

 

 

> ALPS IIa 

 

 

 

 

 

 

 

 

> ALPS IIc 
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ALPS II is realized in stages 

 

ALPS I 

 

 

 

 

 

> ALPS IIa 

 

 

 

 

 

 

 

 

> ALPS IIc 

Hidden photon search:  

no magnets 

Axion-like particle search 

with magnets 
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2013 2014 2015 2016 2017 2018 

ALPS II schedule (rough) 

ALPS IIa 

IIc risk assessments   

ALPS IIc 

installation 

data runs 

ALPS IIc in 2018  

in the HERA tunnel 

Closure of the LINAC tunnel 

of the European XFEL project  

under construction at DESY. 
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The collaboration: PhDs and postdocs 
ALPS II is a joint effort of  

> DESY: 
Babette Döbrich, Jan Dreyling-Eschweiler, Samvel Ghazaryan,  

Reza Hodajerdi, Friederike Januschek, Ernst-Axel Knabbe, Natali Kuzkova, Axel Lindner,  

Andreas Ringwald, Jan Pöld, Jan Eike von Seggern, Richard Stromhagen, Dieter Trines 

> Hamburg University: 
Noemie Bastidon, Dieter Horns 

> AEI Hannover 

(MPG & Hannover Uni.): 
Robin Bähre,  Benno Willke  

> Mainz University: 
Matthias Schott, Christoph Weinsheimer 

 

with strong support from 

> neoLASE, PTB Berlin, NIST (Boulder)   
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ALPS II detector 

Transition Edge Sensor (TES) 
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ALPS II detector 
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ALPS II detector 

Transition Edge Sensor (TES) 
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ALPS II detector 

Transition Edge Sensor (TES) 

> Expectation: 
very high quantum efficiency, also at 1064 nm,  
very low noise. 
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ALPS II: Transition Edge Sensor (TES) 

> Tungsten film kept at the transition to 
superconductivity at 80 mK. 

> Sensor size 25µm x 25µm x 20nm. 
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ALPS II: Transition Edge Sensor (TES) 

> Tungsten film kept at the transition to 
superconductivity at 80 mK. 

> Sensor size 25µm x 25µm x 20nm. 

 

 

 

 

> Single 1066 nm photon pulses! 

> Energy resolution 8%. 

> Dark background 10-4 counts/second. 

> Ongoing: background studies, optimize 

fibers, minimize background from 

ambient thermal photons. 
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More selected TES results 

(Thesis of J. Dreyling Eschweiler, paper submitted to the Journal of Modern Optics) 

 

> The TES is linear and shows 

some saturation at higher 

energies as expected. 

The absolute energy resolution 

stays constant!  
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More selected TES results 

(Thesis of J. Dreyling Eschweiler, paper submitted to the Journal of Modern Optics) 

 

> There is an intrinsic background most likely related to radioactivity  

and cosmic rays depositing energy in the  

silicon substrate  

around the TES. 

> The total  

background rate is  

about 0.01 Hz, 

but the rate of  

photon-like events 

is only  

(0.00010±0.00002) Hz. 

> Is this the “ultimate noise limit” of the ALPS TES? 
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More selected TES results 

(Thesis of J. Dreyling Eschweiler, paper submitted to the Journal of Modern Optics) 

 

> When the TES is coupled via an 

optical fiber to a dark  

room-temperature environment,  

background 1064 nm “photons”  

are registered at a rate of  

(0.0086±0.0011) Hz. 

(using a set-up with an  

efficiency of 23%). 

> Most likely this is caused by a 

pile up of black-body photons 

with longer wavelengths. 
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ALPS II sensitivity 

> Well beyond current limits. 

> Less sensitive than IAXO 

 
ALPS II 
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ALPS II sensitivity 

> Well beyond current limits. 

> Less sensitive than IAXO 

(but much cheaper). 

The proposed helioscope  

International AXion Observatory 
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The proposed helioscope  

International AXion Observatory 
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ALPS II sensitivity 

> Well beyond current limits. 

> Less sensitive than IAXO 

(but much cheaper). 

> Aim for data taking in 2018, 

likely before IAXO. 

 

> QCD axions not in reach. 

> Able to probe hints from 

astrophysics. 

ALPS II 
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> Why should one look for WISPs 

> Indications for WISPs 

> Searches 

> Photons-through-a-wall 

> Summary 

Outline 
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Summary 

> Astrophysics might hint at the existence of axion-like particles. 

 Especially high energy cosmic photons from extragalactic sources  

could pin down a clear evidence for ALPs. 

> ALPS II could search for these axion-like particles and other WISPs. 

 We aim for detecting one infrared photon within an hour. 

> A detection of WISPs at ALPS II  

 would give insight into elementary physics at the 1010 GeV scale,  

 could be crucial to understand Dark Matter, 

 might point to an understanding of Dark Energy and 

 would provide a strong boost for solar physics with IAXO. 

> Looking for WISPs  
 

in the lab, from the sun and as components of the dark matter halo 
  

nicely complements experiments at the energy frontier and other 

accelerator based efforts. 
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Don’t put all eggs into one basket! 
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Additional slides 

 



Axel Lindner | ALPS II | 16 December 2014 |  Page 83 

Okun 1982, Skivie 1983, Ansel‘m 1985, Van Bibber et al. 1987 

Basics of WISP experiments (II) 

> Basic idea: due to their very weak interaction WISPs may traverse any 

wall opaque to Standard Model constituents (except ν and gravitons). 

 WISP could transfer energy out of a shielded environment 

 WISP could convert back into detectable photons behind a shielding. 

> “Light-shining-through-a-wall” (LSW) 

 

 

 

 Real WISPs are produced! 
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Okun 1982, Skivie 1983, Ansel‘m 1985, Van Bibber et al. 1987 

Basics of WISP experiments (III) 

> Basic idea: due to their very weak interaction WISPs may traverse any 

wall opaque to Standard Model constituents (except ν and gravitons). 

 WISP could transfer energy out of a shielded environment 

 WISP could convert back into detectable photons behind a shielding. 

> “Light-shining-through-a-wall” (LSW) 

 

 

 

 The primary and the regenerated photons have  

exactly the same properties (energy, polarization). 
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Okun 1982, Skivie 1983, Ansel‘m 1985, Van Bibber et al. 1987 

Basics of WISP experiments (IV) 

> Basic idea: due to their very weak interaction WISPs may traverse any 

wall opaque to Standard Model constituents (except ν and gravitons). 

 WISP could transfer energy out of a shielded environment 

 WISP could convert back into detectable photons behind a shielding. 

> “Light-shining-through-a-wall” (LSW) 

 

 

 

Coherent production and regeneration: P→Φ  (B·L)2 

L 
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ALPS IIa in HERA-WEST 

ALPS I ALPS IIa 
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ALPS IIa in HERA-WEST 

ALPS I ALPS IIa 

The Klystron gallery  

in HERA-West 

in September 2010 
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ALPS IIa in HERA-WEST 

Since 2012: the ALPS IIa laboratory in HERA-West 
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ALPS II essentials: laser & optics 

Production cavity, infrared Regeneraton cavity, locked with green light. Wall 
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Production cavity, infrared Regeneraton cavity, locked with green light. Wall 
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ALPS II essentials: laser & optics 

Production cavity, infrared Regeneraton cavity, locked with green light. Wall 

> Optical design based on well established techniques used in 
the field of gravitational wave detectors. 

> Several prototype stages to test / demonstrate new challenges 
and mitigate risk before large investments. 
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The photon source 

The laser has been 

developed for LIGO: 

35 W, 1064 nm, M2<1.1 

based on  

2 W NPRO by 

Innolight/Mephisto 

(Nd:YAG (neodymium-

doped yttrium 

aluminium garnet) 
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The central optics 

 

 

0,0006 mm 



Axel Lindner | ALPS II | 16 December 2014 |  Page 95 

The central optics 

 

 

0,0006 mm 
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The central optics 

 

 

 
0,001 mm 0,0006 mm 

0,0004 

mm 

Thanks to Fred Knof from ZMQS! 
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ALPS II magnets 

> The beam tube (cold mass) of 
the HERA dipoles has to be 
straightened  
to increase the aperture from 35 
to at least 50mm. 

> This can be done with a cheap 
“brute force” method. 
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ALPS II magnets 

> The beam tube (cold mass) of 
the HERA dipoles has to be 
straightened  
to increase the aperture from 35 
to at least 50mm. 

> This can be done with a cheap 
“brute force” method. 

> Already the first test in 2012 was 
successful.  

> The straightening method was 
refined and tested in 2014 again. 
 

> Test of a second HERA dipole is 
moving forward (if capacities of 
infrastructure groups allow).  
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Beyond ALPS II 

> Rough estimation with some crucial parameters: 

Exp. Photon 

flux 

(1/s) 

Photon 

E (eV) 

B 

(T) 

L 

(m) 

B·L 

(Tm) 

PB  

reg.cav. 

Sens. 

(rel.) 

Mass 

reach 

(eV) 

ALPS I 3.5·1021 2.3 5.0 4.4 22 1 0.0003 0.001     

ALPS II 1·1024 1.2 5.3 106 468 40,000 1 0.0002 

“ALPS III” 3·1025 1.2 13 400 5200 100,000 27 0.0001 

European 

XFEL 
< 1018 1·104 5.3 106 562 1 0.001 0.01 

PW laser 
 1020 

1/pulse 
2.3 106 10-5 10 1 0.0003 0.5     



Axel Lindner | ALPS II | 16 December 2014 |  Page 100 

“ALPS III” sensitivity 

> With a multi - 10 M€ project 

one could even probe well  

beyond the IAXO reach. 

 

However: 

> It is to be shown first 

that ALPS II can be realized. 

> Magnets as being 

developed for an LHC 

energy upgrade are  

essential. 

> The physics case cannot be forecasted at present  

(beyond probing uncharted territory). 

ALPS III 
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WISP physics is fascinating! 

Spektrum der Wissenschaft,  

Juni 2014 


