Minority Carriers: A Revolution for Low Background TPC Work

Dan Snowden-Ifft

7th Symposium on Large TPCs for Low Energy Rare Event Detection

December 16, 2014

Directional Recoil Identification From Tracks (DRIFT)

Sheffield University

Neil Spooner – PI Matt Robinson Dan Walker Stephen Sadler Sam Tefler Andrew Scarff Anthony Ezeribe Frederic Mouton Trevor Gamble

Occidental College

Dan Snowden-Ifft - PI Jean-Luc Gauvreau Chuck Oravec Alex Lumnah Chongmo Tang

Colorado State University

John Harton – Pl Jeff Brack Dave Warner Alexei Dorofeev Fred Shuckman II

University of New Mexico

Dinesh Loomba - PI Michael Gold — PI John Matthews - PI Eric Lee Eric Miller Nguyen Phan Randy Lafler

The University of Edinburgh
Alex Murphy – PI

Wellesley College
James Battat – Pl

University of Hawaii Sven Vahsen – Pl

Tom Thorped

Boulby Mine

Sean Paling – PI Emma Meehan Louise Yeoman

Introduction to DRIFT

- Directional Recoil Identification From Tracks (DRIFT) is a directional dark matter detector (PRD, 61 (2000) 1, NIMA, 600 (2009) 417, AstroPle, 31 (2009) 261)
- DRIFT has been operating in Boulby since 2001
- DRIFT-I -> DRIFT-II (a-e)
- DRIFT-IId volume = 0.8 m^3 , ~40 Torr gas
- MWPC readouts (NIMA, **555** (2005) 173)
- Negative CS₂ anion drift to limit diffusion (PRD, 61 (2000) 1)
- Phenomenal Compton background rejection (AstroPle, 28 (2007) 409)
- Many gas mixtures possible
- DRIFT-IId used a 30-10 Torr of CS₂-CF₄ to optimize for spin-dependent limits, 139 g target mass. (AstroPle, 35(2007) 397)
- Relatively cheap, clean, stable and scalable technology.

DRIFT-IId Data

CS2-CF4 Winter 09/10 Background Runs 47.4 days, 6152 events, 130 events per day

- 47.4 days of live time recorded
- A background of 130 events per day found

AstroPle, **35**, (2012) 397.

Radon Progeny Recoils

AstroPle, 28, (2007) 409.

DRIFT-IId Data

All Background-Neutron Runs F equivalent energy vs Width

- Diffusion of the RPRs from the central cathode increases their width
- So used width as a crude discrimination parameter
- Black = Background
- Red = Neutron recoils

DRIFT-IId Data

- Select an signal window
- For 100 GeV WIMPs the signal window gives only 8% efficiency for events passing the cuts

DRIFT-IId Spin-Dependent WIMP Limits

Mobility and Diffusion Experiment

Lateral Diffusion Measurements

Diffusion Theory

$$S^2 = \frac{2kTL}{eE}$$

Lateral Diffusion Results

Longitudinal Diffusion Measurements

 \leftarrow t = 0 => flashlamp pulse

Rev. Sci. Inst., 84, (2013) 1.

Longitudinal Diffusion Results

Minority Carriers

driftft3-1023-02
E field = 208 V/cm, drift distance = 6 in

- As discussed here in 2012
- Separate peaks in the data indicate that other carriers, minority carriers, are generated at the site of the ionization and carry their charge with different velocity to the readout plane.
- An interesting puzzle but of little impact to negative ion drift detectors because of their tiny size.
- BUT...

Discovery of Minority Carriers in Mixtures of CS₂ and O₂

Earthquake Fiducialization

Oxy Seismometer 2/12/2013

Discovery of Minority Carriers in Mixtures of CS₂ and O₂

Fall 2013 DRIFT-IId Results with 30-10-1 Torr CS₂-CF₄-O₂

Neutron calibration (3.2 days)

DRIFT-IId Results with 30-10-1 Torr CS₂-CF₄-O₂

Fall 2014 DRIFT-IId Results with 30-10-1 Torr CS₂-CF₄-O₂ Neutron calibration (3.2 days)

Deconvolution of Tracks

- Knowledge of the drift distance allows us to precisely calculate the diffusion (the PSF) of the ionization.
- Therefore we should be able to, like astronomers, deconvolve the observed track to get better knowledge of the actual track.
- Here is a theoretical (20 cm drift) simulation.

Deconvolution of Tracks

 Here is some real data taken with a GEM-Optical readout TPC

Conclusion

- The addition of O₂ to mixtures containing CS₂ produces abundant minority carriers.
- The minority carriers allow us to accurately measure the drift distance of segments of ionization.
- Fiducialization has revolutionized DRIFT's background rejection capabilities because our only known backgrounds come from the central cathode.
- New limits have been set and data for better limits are being taken now.
- Knowledge of the diffusion should allow DRIFT to deconvolve tracks to obtain better directional information.
- Vive la Révolution!

Thanks

Extra Slides

Alpha + O_2

Rev. Sci. Inst., **85**, (2014) 1.

Triggerless Fiducialization

The problem

The 6 MeV Po-218 alpha can hide in central cathode wires.

Thin film

Give the alphas few places to hide in an aluminized Mylar thin film.

Thin Film

Of course some alphas will find a way to hide

Thin Film

Give

film.

Texturized thin film

- Miraculously the guys at UNM have managed to create a texturized 0.9 micron thin film.
- This has been deployed on DRIFT-IId in Boulby.
- Preliminary results indicate a drop from 130 events per day down to ~1 event per day.
- Further improvements are expected with the deployment of DRIFT-Ile this spring.