

T2K: Recent results and TPC operation (and cross section measurements) 17 December 2014, Anthony Hillairet

The mass states appear in the oscillation probabilities only in the form of differences:

■
$$m_2^2 - m_1^2 = \Delta m_{21}^2 =$$

(7.58^{+0.22}_{-0.26}) × 10⁻⁵ eV²

$$|m_3^2 - m_2^2| = |\Delta m_{32}^2| = (2.35^{+0.12}_{-0.09}) \times 10^{-3} \text{eV}^2$$

The sign of Δm_{32}^2 is currently unknown.

- \implies Two possible mass hierarchies:
- Normal Hierarchy (NH)
- Inverted Hierarchy (IH)

3 mixing angle:

- $sin^2 2\theta_{12} = 0.846 \pm 0.021$ From $\nu_e \rightarrow \nu_x$ (SNO, Super-K, KamLAND)
- $\sin^2 2\theta_{23} > 0.95(90\% C.L.)$ From $\nu_{\mu} \rightarrow \nu_{\chi}$ (Super-K, K2K, MINOS, T2K, NO ν A)

```
sin<sup>2</sup> 2\theta_{13} = 0.093 \pm 0.008

From \nu_e \rightarrow \nu_x

(Daya Bay, RENO, Double Chooz)

From \nu_\mu \rightarrow \nu_e

(T2K, NO\nuA)
```


The Tokai to Kamioka experiment

Univ. of Tokye

Japan

KAMIOKA

The T2K experiment was designed to measure:

 ν_e appearance

P

$$(
u_{\mu}
ightarrow
u_{e}) pprox \sin^{2} heta_{23} \cdot \sin^{2}2 heta_{13} \cdot \sin^{2}\left(rac{\Delta m^{2}_{32}}{4E_{
u}}
ight)$$

• ν_{μ} disappearance

$$\mathcal{P}(\nu_{\mu}
ightarrow \nu_{x}) pprox \mathbf{1} - (\cos^{4} heta_{13} \cdot \sin^{2}2 heta_{23} + \sin^{2} heta_{23} \cdot \sin^{2}2 heta_{13})\sin^{2} heta_{13}$$

PARC

TOKAI

J-PAR

KEK

295 km

T2K measurement setup, J-PARC

- 30 GeV protons to neutrino beamline
- Design goal of 750 kW
- 250 kW reached recently
- 90 cm long graphite target
- Pions decaying in flight producing ν_μ
- Positive (negative) pions focussed by 3 magnetic horns for neutrino (anti-neutrino) beam mode

T2K's near detector: ND280

ND280 is located 280m from the production target to measure the characteristics of the unoscillated neutrino beam:

- Intrinsic ν_e contamination \bullet ν_{μ} interaction rate
- The neutral current π^0 background ν_{μ} energy spectrum

- 0.2T magnetic field
 - Central component is the tracker Composed of 3 TPCs and 2 FGDs
- FGDs (Fine-Grained Detectors): active targets made of layers of scintillator bars \implies provides detailed vertex information
- TPCs: momentum measurement and particle ID using dE/dx

ND280's time projection chambers (TPCs)

- MicroMegas detectors
- Inner volume: Argon (95%), CF₄ (3%), isobutane (2%)
- Outer volume: CO₂ for electric insulation
- Drift velocity: 7.8 cm/µs

3 identical TPCs:

- Active tracking region:
 (L × H) 720 mm × 2016 mm
- Drift distance 897 mm
- Drift field 279 V/m

ND280's time projection chambers (TPCs)

36 pads

72 MicroMegas

- (*L* × *H*) 359 mm × 349 mm
- 1726 active pads: (L × H) 9.8 mm × 7.0 mm
 - \implies 124416 channels
 - 128 μ m amplification gap

Front end electronics based on ASIC chip

- 72 channels × 511 analog memory cells
- Sampling frequency at 25 MHz

T2K's far detector: Super Kamiokande

SK is located 295km from the production target to measure the neutrino beam <u>after oscillation</u>

39 m

- 50 kton water Cherenkov detector
- 22.5 kton fiducial volume
- Inner detector (ID) ~11000 20" PMTs, 40% coverage
- Outer detector (OD) ~2000 8" PMTs facing outward, used to veto cosmics, radioactivity, ...

Slide 8 /

Data collected and analyzed

 Results possible due to the efforts of J-PARC accelerator division and other related people.

Data collected and analyzed

- Results possible due to the efforts of J-PARC accelerator division and other related people.
- Results presented today correspond to 6.57 × 10²⁰ POT (Protons On Target)

Data collected and analyzed

- Results possible due to the efforts of J-PARC accelerator division and other related people.
- Results presented today correspond to 6.57×10²⁰ POT (Protons On Target)
- First data taking in anti-neutrino beam mode last June.
 - \implies First results for anti-neutrino oscillations coming soon !
- Taking more anti-neutrino beam mode data as we speak !

 ν flux predictions and their uncertainties

How many incoming neutrinos ?

Cross section uncertainties on ν -C and ν -O from external sources (MiniBooNE) ν flux predictions and their uncertainties

How many incoming neutrinos ?

How many neutrinos will interact ?

Cross section uncertainties on ν -C and ν -O from external sources (MiniBooNE) ν flux predictions and their uncertainties

 $\frac{\text{ND280} \ \nu_{\mu} \ \text{measurements}}{\text{+ Statistic and systematic}}$

SK ν_{μ} events

SK ν_e events

+ Statistic and systematic uncertainties for selection and detector

ν_e measurement results

Predicted number of events with $6.57\times10^{20}\textit{POT}$

- Non-oscillation hypothesis $sin^2 2\theta_{13} = 0.0$ \implies MC prediction: 4.9
- Oscillation hypothesis based on reactor experiment results sin²2θ₁₃ = 0.1

```
\implies MC prediction: 21.6
```


Slide 11

ν_e measurement results

Predicted number of events with $6.57\times 10^{20} \textit{POT}$

- Non-oscillation hypothesis $sin^2 2\theta_{13} = 0.0$ \implies MC prediction: 4.9
- Oscillation hypothesis based on reactor experiment results sin²2θ₁₃ = 0.1
 - \implies MC prediction: 21.6

Non-oscillation hypothesis rejeted at 7.3 σ First ever confirmed observation of a lepton flavor appearance Phys. Rev. Lett. 112, 061802 (2014)

Results of the joint analysis

- ν_e appearance sensitive to $\sin^2 2\theta_{13}$ and δ_{CP} but there is a degeneracy between them
- Reactor neutrino experiments (ν
 _e disappearance) are sensitive to sin²2θ₁₃ only

 \implies degeneracy can be resolved

Results of the joint analysis

- ν_{μ} disappearance sensitive to $\sin^2\theta_{23}$ and $|\Delta m_{32}^2|$
- Currently most precise measurement on sin²θ₂₃ and |Δm²₃₂|
 Very little sensitivity to the sign of Δm²₃₂

	NH	IH	Sum
$\sin^2\theta_{23} \le 0.5$	0.179	0.078	0.257
$\sin^2\theta_{23} > 0.5$	0.505	0.238	0.743
Sum	0.684	0.316	1.0

Small preference for normal hierarchy

New data: $\bar{\nu}$ beam mode started !

- T2K will now measure $\bar{\nu}_{\mu}$ disappearance, $\bar{\nu}_{e}$ appearance \implies search for CP violation
- anti-neutrino beam mode run last June (Run5) and since November (Run6)
- Run5 results coming soon !

ND280 $\bar{\nu}_{\mu}$ measurement crucial for T2K

- $\bar{\nu}_{\mu}$ cross section has never been measured at T2K E_{ν} range
- Expected $\sigma_{\bar{\nu}_{\mu}} \sim 1/3 \sigma_{\nu_{\mu}}$ $\implies \nu_{\mu}$ interaction rate not negligible compared to $\bar{\nu}_{\mu}$
- SK is a water Cherenkov detector → No reconstruction of lepton charge
- ND280 has charge reconstruction from the TPCs

 \Longrightarrow ND280 can measure the interaction rate ratio $ar{
u}_{\mu}/
u_{\mu}$

Constant effort to improve the calibration and reconstruction of the TPCs

- New MicroMegas timing calibration
- Reconstruction improvements for vertical tracks
- Using vertical tracks for better gain calibration
- Better parametrization of the dE/dx for particle identification
- Understanding the \vec{E} Field distortion

A much more significant source of systematic uncertainties:

Constant effort to improve the calibration and reconstruction of the TPCs

- New MicroMegas timing calibration
- Reconstruction improvements for vertical tracks
- Using vertical tracks for better gain calibration
- Better parametrization of the dE/dx for particle identification
- Understanding the \vec{E} Field distortion

A much more significant source of systematic uncertainties:

Mapping and correcting \vec{B} Field

- The \vec{B} Field was mapped prior to installing the detectors in the ND280 magnet
- **\vec{B}** Field map used to correct the charge position in the track reconstruction
- \implies Relative bias between TPC2 and TPC3 reduced

Laser system to measure distortions

- The laser system illuminates aluminium dots on the cathodes
- Photo-electrons are measured by MicroMegas
- Comparison of known and measured dot positions provides field distortion integrated over the whole drift distance
- \implies no details of the distortion versus drift distance
- This measured field distortion is used to evaluate the systematics

Another tool: Averaged track residuals

- The average residuals for through-going tracks (cosmics or beam) can test distortions for all drift distances
- Residuals have displayed an "S-Shape" behaviour for a long time
- Distortions on the upstream and downstream edges of the TPCs can explain this shape

- An \vec{E} Field distortion with the right shape can explain the residual patterns
- No clear source identified at the moment

- An \vec{E} Field distortion with the right shape can explain the residual patterns
- No clear source identified at the moment
- The laser calibration is insensitive to this particular distortion pattern

- An \vec{E} Field distortion with the right shape can explain the residual patterns
- No clear source identified at the moment
- The laser calibration is insensitive to this particular distortion pattern
- Empirical map can be fitted using the residuals from different drift distances

- An \vec{E} Field distortion with the right shape can explain the residual patterns
- No clear source identified at the moment
- The laser calibration is insensitive to this particular distortion pattern
- Empirical map can be fitted using the residuals from different drift distances
- For now simple empirical 2D model for the electric potential:
 - x: drift direction; z: ν beam direction
 - L: max drift distance = 897mm

Cathode foil

V/mm

 $E_{z'}$

900

800

600

$$\varphi(x,z) = A\left[\sin\left(\frac{2\pi}{L}x\right)\cosh\left(\frac{z}{b_1}\right) + c\sin\left(\frac{6\pi}{L}x\right)\cosh\left(\frac{z}{b_2}\right)\right]$$
\vec{E} Field distortion empirical mapping

\vec{E} Field distortion empirical mapping

\vec{E} Field distortion simulation

- In parallel to the mapping effort, we are also trying to simulate the distortion
- Various displacements, misalignments, bulging already tested
- Only promising test was displacing the anode and cathode inward
- However, the needed displacement is too big to fit the construction tolerance of ~ 100µm

The neutrino cross section challenge

- Neutrino cross sections are already and will be a major source of systematic uncertainties for accelerator neutrino experiments (range 0.2-5 GeV)
- Nuclear effects have significant impacts on neutrino energy reconstruction
- Final state interactions make it difficult to understand the neutrino interaction

The neutrino cross section challenge

- Neutrino cross sections are already and will be a major source of systematic uncertainties for accelerator neutrino experiments (range 0.2-5 GeV)
- Nuclear effects have significant impacts on neutrino energy reconstruction
- Final state interactions make it difficult to understand the neutrino interaction

- To really understand the nuclear effects, we need to measure neutrino cross sections on various nuclei
- T2K can contribute because of its multi-detector structure !

T2K's wide cross section program

ND280 FGDs		Phys. Rev. D 87, 092003 (2013) PRL 113, 241803 (2014) arXiv: 1411.6264
ND280 P0D	$ u_{\mu} \text{ NC} \pi^{0} $ $ u_{\mu} \text{ NC elastic} $	
ND280 ECals	$ u_{\mu}$ on lead	
ND280 TPCs	$ u_{\mu}$ on argon	
INGRID	$ u_{\mu} \text{ CC inclusive on Fe & CH} $ $ u_{\mu} \text{ CC quasi-elastic on Fe} $ $ u_{\mu} \text{ CC inclusive vs } E_{\nu} $	arXiv: 1407.4256
Super-K	$ u_{\mu}$ NC elastic via γ emission	Phys. Rev. D 90, 072012 (2014)

Most of these cross sections will be evaluated for $\bar{\nu}_{\mu}$ as well !

T2K's wide cross section program

C	$ \nu_{\mu} \text{ CC inclusive on carbon} $ $ \nu_{e} \text{ CC inclusive on carbon} $		Phys. Rev. D 87, 092003 (2 PRL 113, 241803 (2014	2013) -)
ND280 FGDs	$ u_{\mu}$ CC quasi-elastic		arXiv: 1411.6264	
	$ u_{\mu}$ CC0 π , CC1 π			
	$ u_{\mu} \operatorname{CC} \pi$ coherent			
ND280 P0D	$ u_{\mu} \ NC \pi^{0}$	Fire	at <i>u</i> cross soction results	
	$ u_{\mu}$ NC elastic	cin	ν_e Gross section results	
ND280 ECals	$ u_{\mu}$ on lead	5111		
ND280 TPCs	$ u_{\mu}$ on argon			
INGRID	$ u_{\mu}$ CC inclusive on Fe & C	ЭН	arXiv: 1407.4256	
	$ u_{\mu}$ CC quasi-elastic on Fe	9		
	$ u_{\mu}$ CC inclusive vs $E_{ u}$			
Super-K	$ u_{\mu}$ NC elastic via γ emiss	ion	Phys. Rev. D 90, 072012 (2	2014)

Most of these cross sections will be evaluated for $\bar{\nu}_{\mu}$ as well !

T2K's wide cross section program

ND280 FGDs		Phys. Rev. D 87, 092003 (2013) PRL 113, 241803 (2014) arXiv: 1411.6264
ND280 P0D	$ u_{\mu} \text{ NC} \pi^{0} $ $ u_{\mu} \text{ NC elastic} $	
ND280 ECals	$ u_{\mu}$ on lead	
ND280 TPCs	$ u_\mu$ on argon	
INGRID	$ u_{\mu} \text{ CC inclusive on Fe & CH} $ $ u_{\mu} \text{ CC quasi-elastic on Fe} $ $ u_{\mu} \text{ CC inclusive vs } E_{\nu} $	arXiv: 1407.4256
Super-K	$ u_{\mu}$ NC elastic via γ emission	Phys. Rev. D 90, 072012 (2014)

Most of these cross sections will be evaluated for $\bar{\nu}_{\mu}$ as well !

Argon is very popular these days !

- LBNE → Liquid argon (LAr) TPC ⇒ A lot of effort going into studying *ν*-Ar interactions and LAr TPCs: ArgoNeut, CAPTAIN, MicroBooNE, ...
- 16 kg of a mix of Ar:CF₄:iC₄H₁₀ (95:3:2)
- Already one event found by chance in our data.
- **2** ν interaction generators used in T2K.
- \implies Number of ν_{μ} -Ar CC inclusive in our 5.9×10²⁰*POT*: NEUT = 600 events GENIE = 552 events

Direct observation of nuclear effects

Thanks to the very low density of the gas (at 1 atm), the ND280 TPCs can measure very low energy protons

A great test for the generators

- The number of emitted protons is another observable sensitive to nuclear effects
- The GENIE prediction seems already problematic ⇒ Developers already contacted.

Specialised reconstruction for vertices

- Previous reconstruction in the TPCs:
 - No concept of vertex
 - Designed to find tracks crossing the TPCs
 - \implies New reconstruction needed
- Complete rewrite: TREx (TPC Reconstruction Extension)
- The challenge is to remove the massive background of tracks coming from the surrounding detectors
 New pattern recognition searching for vertices.
- Reusing previous maximum likelihood fit: Bias < 2%, resolution < 10% à 1 GeV/c

U.

T2K's ARGONUTS

ARgon Gas Outgoing NUcleon Tracking Studies.

- First ν_μCC inclusive cross section in 2015 with proton multiplicity and momentum distributions.
- Cross section measurement to be followed by "exotic" event search.

arXiv: 1405.4261

Summary

- T2K continues to improve on it's oscillation parameter measurements
- The new joint analysis of the ν_μ disappearance and ν_e appearance channels provides an optimale determination of the oscillation parameters from the T2K data.
- The ND280 TPCs are a crucial component of the T2K apparatus
- The TPCs performance is constantly improved with increasing understanding of the TPC features
- Many cross section measurements already performed and published, including the first v_eCC cross section since 1978 !
- And soon the first neutrino-argon gas cross section measurement from the TPCs !

T2K has only collected 10% of the expected total data.

 \implies a lot more cool results to come !

Backup slides

T2K off-axis configuration

T2K measurement setup, INGRID (on-axis)

- INGRID monitors the neutrino beam direction and intensity
- Each module consists of iron and scintillator layers

T2K measurement setup, ND280 (off-axis)

ND280 measures the characteristics of the unoscillated neutrino beam:

0.2T magnetic field

Central component is the tracker Composed of 3 TPCs and 2 FGDs

 $\pi^0 \text{ dedicated detector} \\ \implies \mathsf{P0D}$

Electromagnetic calorimeters
 ⇒ ECal

Yoke instrumented with scintillators \Rightarrow Side Muon Range Detectors (SMRDs)

Slide 34

Fine-Grained Detectors (FGDs)

2 FGDs serving as active targets

- FGD1: Layers of X and Y scintillator bars
- FGD2: Layers of X and Y scintillator bars alternated with water layers
- Provides detailed vertex information
- Multi-Pixel Photon Counter

2013 ND280 ν_{μ} event selection

One μ^- from FGD1 crossing TPC2 \Longrightarrow **CC inclusive sample**

2013 ND280 ν_{μ} event selection

2013 ND280 ν_{μ} event selection

Results, $6.30 \times 10^{20} POT \nu$ beam mode

Neutrino beam stability

Beam direction measurement: precision of 0.1 mrad

- For each run period, the beam is stable within 0.4 mrad
- Precision and stability much better than the 1 mrad of our initial goal

1 mrad change in u beam direction lead to a 2-3% change in energy scale (\approx 16MeV)

Slide 33 / 30

ND280 ν_e measurement (tracker analysis)

ND280 can verify the predicited ν_e intrinsic contamination by measuring this component of the beam directly

- First select CC inclusive *v_e* interactions then split into:
 - CCQE sample: only one TPC-FGD track
 - 2 CCnonQE sample: more than one TPC-FGD track
 - Both samples have >65% ν_e purity

Likelihood fit to extract the ratio between observed and expected ν_e interactions: Data/MC ratio: $f(\nu_e) = 1.055 \pm 0.058(\text{stat.}) \pm 0.079(\text{syst.})$

Slide 33 / 30

ν_{μ} interaction in Super-Kamiokande

ν_{μ} interaction in Super-Kamiokande

ν_e interaction in Super-Kamiokande

ν_e interaction in Super-Kamiokande

u_{μ} selection in T2K SK

- Event is fully contained in SK fiducial volume (22.5 ktonne)
- 2 Number of rings found = 1
- 3 Ring has muon-like particle ID
- 4 Reconstructed p_{μ} > 200 MeV/c
- 5 Nb decay electrons < 2

ν_e selection in T2K SK

- Event is fully contained in SK fiducial volume (22.5 ktonne)
- 2 Number of rings found = 1
- Ring has electron-like particle 3 ID
- Visible energy > 100 MeV
- No decay electrons 5
- 6 Reconstructed neutrino energy (CCQE kinematic) < 1250 MeV.
- 7 π^0 cut: Force fit of a 2nd ring $\frac{1}{350}$ \implies cut on the invariant mass and the likelihood fit ratio of the 2 rings.

1000

17 December 2014 | Anthony Hillairet | T2K: its results and its TPCs

20

ສົດດ

2000

Visible energy (MeV)

Number of events

Flux in anti-neutrino beam mode

/ 30

External neutrino cross section constraints

The fit to the ND280 data cannot start from scratch, it needs prior knowledge of neutrino cross sections

- MiniBooNE neutrino-nucleus scattering data is fitted to extract values and prior errors
- MiniBooNE data well-suited for T2K:
 - Wider neutrino energy spectrum
 - 4π open volume Cherenkov detector like Super-K
 - CH₂ target similar to T2K targets (mostly ¹²C and ¹⁶O)
- Many parameters constrained:
 - "Axial masses" M_A^{QE}, M_A^{RES}
 - CCQE and CC1 π normalization factors
 - ...
- Parameters which are nuclei dependent are uncorrelated between ND280 (¹²C) and SK (¹⁶O)

ν_e appearance analysis

ν_e appearance analysis

 ν flux predictions and their uncertainties

How many incoming neutrinos ?

ν_e appearance analysis

Cross section uncertainties on ν -C and ν -O from external sources (MiniBooNE) ν flux predictions and their uncertainties

How many incoming neutrinos ?

How many neutrinos will interact ?

ν_e appearance analysis

17 December 2014 | Anthony Hillairet | T2K: its results and its TPCs

ν_e appearance analysis

17 December 2014 | Anthony Hillairet | T2K: its results and its TPCs

ν_e appearance analysis

TREx event display

Slide 36 / 30