FCC Week 2015, Washington DC 23-27 March 2015 Marriott Georgetown Hotel https://indico.cern.ch/event/340703/

FCC RF Overview

Erk Jensen, CERN

... presenting – and gratefully acknowledging – the ideas and contributions of many! 23-March-2015

Outline

- Introduction what are we talking about?
- High efficiency RF power generation
- Superconducting RF R&D
 - Recent progress
 - The focus of FCC SRF R&D
 - The challenges (power, HOM power)
 - How this fits in with other studies/projects @ CERN
- Standing invitation to join in!

Introduction

Scenarios and challenges for FCC-ee

ROOM C, Marriott Georgetown Hotel

Highly HOM-damped cavities

Advances and perspectives in SRF bulk NB developments

Past, present and future prospects of SRF ingot niobium technology

11:00

- I will be only introducing the subject and sketch the context no details
- Advertisement: *Please come to tomorrow's dedicated sessions*:

Andrew BUTTERWORTH

08:30 - 08:50

10:50 - 11:10

11:10 - 11:30

11:30 - 11:50

11:50 - 12:00

Ganapati MYNENI

Oliver KUGELER

Sergey BELOMESTNYKH

AM: SRF: Novel Cavity Concepts & Cryomodules

ROOM C, Marriott Georgetown Hotel A compact, modular cryomodule concept suitable for a range of applications and Robert RIMMER Assembly experience of large scale production CM for different applications Olivier NAPOLY 09:10 - 09:30 ROOM C, Marriott Georgetown Hotel Performance results from elliptical cavities Eckhard ELSEN ROOM C, Marriott Georgetown Hotel 09:30 - 09:50 Preliminary design of the CEPC SRF Jiyuan ZHAI Coffee break system Coffee Break Marriott Georgetown Hotel 10:00 - 10:30 | Marriott Georgetown Hotel 09:50 - 10:30 Cavity fabrication concepts: rapid forming Enzo PALMIERI ROOM C, Marriott Georgetown Hotel 10:30 - 10:50 Fundamental power couplers Eric MONTESINOS

PM: SRF: Coating Technologies, Higher Efficiency RF

	Ultraefficient superconducting R	Alexander ROMANENKO		
	ROOM C, Marriott Georgetown Hotel	13:30 - 13:40		
	Advances in development of Nb	Anne-Marie VALENTE		
	ROOM C, Marriott Georgetown Hotel	13:40 - 14:00		
14:00	Perspectives of SRF performance	Sarah AULL 🗎		
	ROOM C, Marriott Georgetown Hotel	14:00 - 14:20		
	Advances in development of diff	Matthias LIEPE		
	ROOM C, Marriott Georgetown Hotel	14:20 - 14:40		
	Development of non-Nb coatings		Alexander GUREVICH	
	ROOM C, Marriott Georgetown Hotel	14:40 - 15:00		
15:00	Thin films SRF Reza VALIZADEH studies in AS	Coffee Break	Coffee Break	
	Coffee break			
	Marriott Georgetown Hotel	Marriott Georgetown Hotel	Marriott Georgetown Hotel	
	High power solid state amplifiers technology – start of the art, advances & Georgy SHARKOV perspectives			
16:00	Development of klystrons with ultimately high - 90% RF power production Christopher LINGWOOD efficiency			
	High power IOTs	Morten JENSEN		
	ROOM C, Marriott Georgetown Hotel	16:30 - 17:00		

FCC-ee and FCC-hh

- FCC-ee (45 GeV ... 175 GeV electrons and positrons):
 - Total RF power 100 MW CW!
 - Requires R&D for
 - Highly efficient RF power generation
 - An RF system scalable to this size (11 GV)
 - An RF system that can cope with 1.4 A beam current
 - Optimum use of cryogenic system

SC Cavities
Cryomodules
Amplifiers
Power Couplers
HOM Damping

FCC-ee is considered as intermediate stage before FCC-hh!

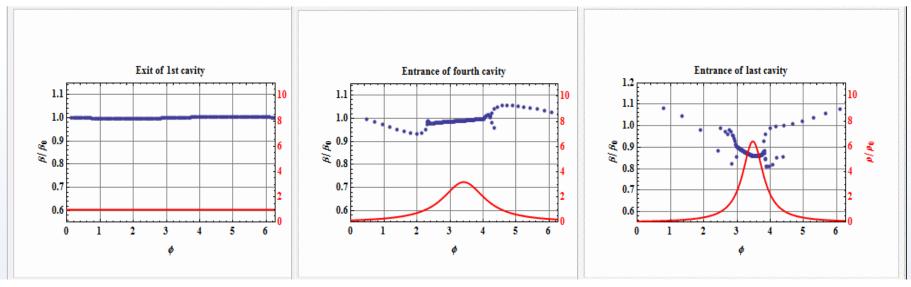
- FCC-hh (50 TeV protons):
 - A "small" RF system in comparison (about 2x LHC)
 - ... will however take advantage of R&D for FCC-ee
 - Challenging beam dynamics! (beam-beam, e-cloud, impedances and their reduction...) → dedicated session "FCC-hh Technology and beam physics"

... a 100 MW CW class SRF system requires R&D for

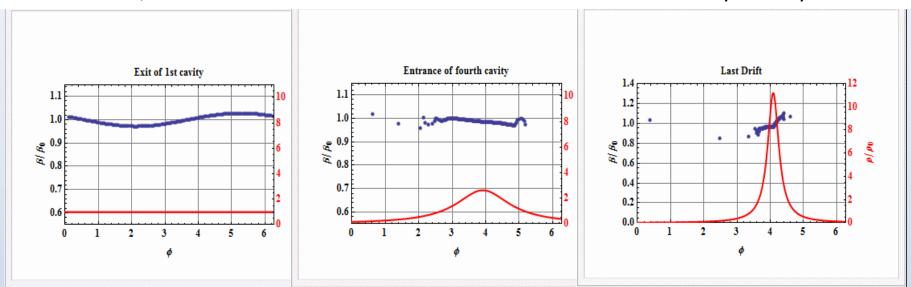
HIGH EFFICIENCY RF POWER GENERATION

Synergy with EuCARD II, WP "EnEfficient", Co-funded by the European Commission, Grant Agreement No: 312453

High efficiency klystrons



Tomorrow afternoon: C.Lingwood's presentation


- State-of-the-art klystrons reach about 65% efficiency at saturation, normally they are used below saturation for amplitude control.
- 2014 saw a breakthrough in klystron theory:
- The "congregated bunch" concept was re-introduced [V.A. Kochetova, 1981]
 - (later electrons faster when entering the output cavity).
- The concept of "bunch core oscillations" was introduced [A. Yu. Baikov, et al.: "Simulation of conditions for the maximal efficiency of decimeter-wave klystrons", Technical Physics, 2014]
 - (controlled periodic velocity modulation)
- The "BAC" method was invented [I.A. Guzilov, O.Yu. Maslennikov, A.V. Konnov, "A way to increase the efficiency of klystrons", IVEC 2013]
 - (Bunch, Align velocities, Collect outsiders)
- These methods together promise a significant increase in klystron efficiency (approaching 90%)
- An international collaboration has started prototypes are being designed. (SLAC plans to convert an existing 5045 klystron – simulations are encouraging)

20 MW, 8 beams 5 cavities MBK originally simulated by Chiara Marrelli

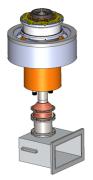
20 MW, 8 beams 5 cavities MBK with 'core oscillations' simulated by Andrey Baikov

Slides from I. Syratchev, https://indico.cern.ch/event/297025/contribution/2 at "EnEfficient RF Sources" Workshop, Daresbury 2014

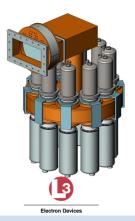
ESS approach: Multi-beam IOTs

M. Lindroos: ESS project status, SLHiPP-5, 18-19 March, 2015

WP8 1.2 MW IOT Prototype Update


Current Status:

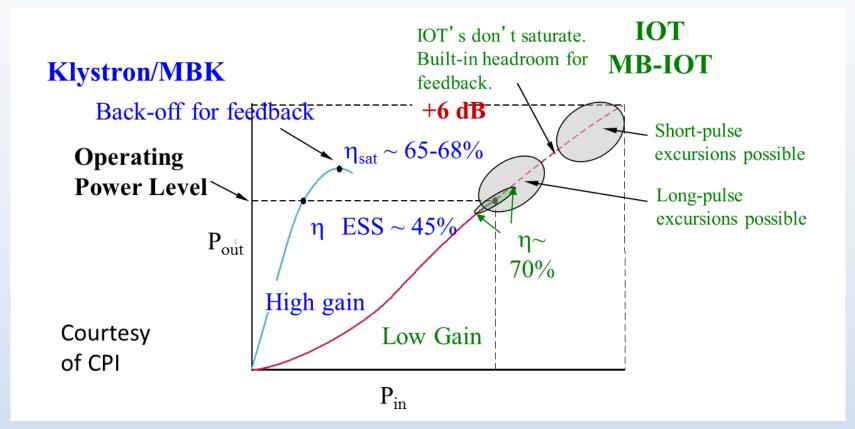
- Two contracts place in September 2014
- One contract with Thales/CPI
- One contract with L3
- Delivery in 24 months
- Factory Acceptance at L3 and CERN
- Kick-off meetings and one Preliminary Design Report approved


Next stages:

- Single beam IOTs/beam sticks being developed by both suppliers
- Complete thermal, mechanical and RF modelling
- Complete Preliminary and Final Design Reviews
- Identify auxiliary supplies: Ion pumps, solenoid, filament
- Identify RF drivers (up to 2 kW)

Parameter		Comment
Frequency	704.42 MHz	Bandwidth > +/- 0.5 MHz
Maximum Power	1.2 MW	Average power during the pulse
RF Pulse length	Up to 3.5 ms	Beam pulse 2.86 ms
Duty factor	Up to 5%	Pulse rep. frequency fixed to 14 Hz
Efficiency	Target > 65%	

Pre-tender CPI Cartoon


Differences IOT-klystron

→ Tomorrow afternoon: M. Jensen's presentation

M. Jensen: IOTs for ESS, EnEfficient RF Sources RF Workshop, 2014, https://indico.cern.ch/event/297025/contribution/11

... a 100 MW CW class SRF system – 11 GV of RF and to cope with 1.4 A beam requires

SUPERCONDUCTING RF R&D

Complication: FCC-ee is 4 different machines!

RF: 800 MHz, 400 MHz or a combination

FCC-ee (per beam)	Z	W	Н	tt
Energy [GeV]	45	80	120	175
Beam current [mA]	1450	152	30	6.6
SR power [MW]	50	50	50	50
Energy loss/turn [MeV]	30	330	1,670	7,550
RF voltage [MV]	2,500	4,000	5,500	11,000

• For comparison: FCC-hh (400 MHz)

FCC-hh (per beam)	<i>50</i> TeV	
Energy [GeV]	50,000	
Beam current [mA]	510	
SR power [MW]	2.4	
Energy loss/turn [MeV]	4.6	
RF voltage [MV]	32	

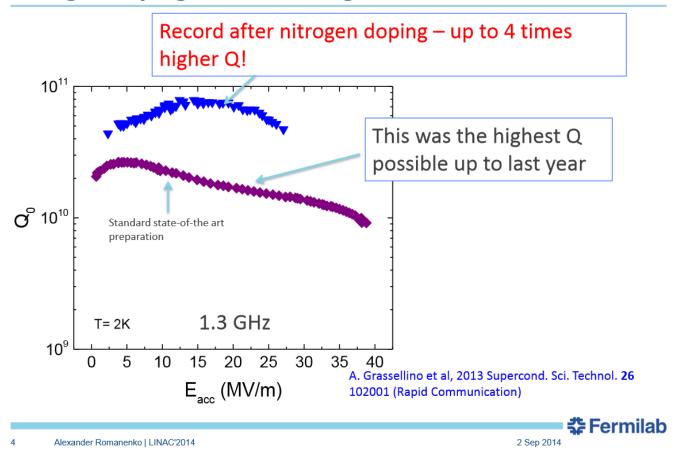
SRF R&D around the world – recent progress

- 2013 saw two major breakthroughs in SRF R&D:
 - Anna Grasselino et al. (FNAL): "New Insights on the Physics of RF Surface Resistance and a Cure for the Medium Field Q-Slope", SRF 2013
 - 2. Sam Posen et al. (Cornell): "Theoretical Field Limits for Multi-Layer Superconductors", SRF 2013

This is encouraging and highly motivating!

R&D like this is essential to develop and optimize the FCC-ee RF system!

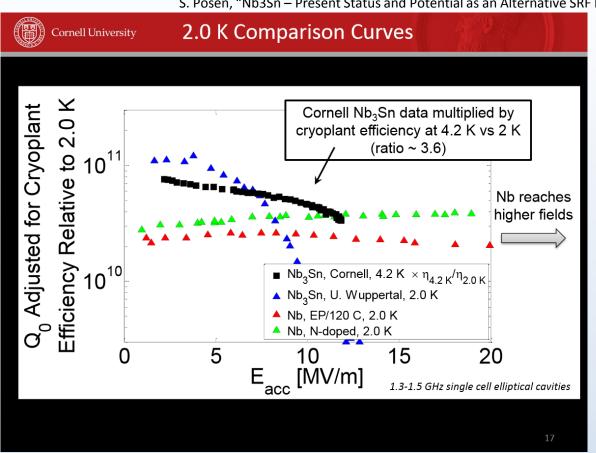
A. Grasselino et al.: Nitrogen Doping



A. Romanenko, "Breakthrough Technology for Very High Quality Factors in SRF Cavities", Linac2014, TUIOC02

→ Tomorrow afternoon: A. Romanenko's presentation

Nitrogen doping: a breakthrough in Q


Sam Posen et al.: Nb₃Sn coating

→ Tomorrow afternoon: M. Liepe's presentation

S. Posen, "Nb3Sn – Present Status and Potential as an Alternative SRF Material", Linac2014, TUIOC03

- Careful experiment with Nb $_3$ Sn coating (2...3 μ m) & 6 h annealing resulted in $Q_0>10^{10}$ with modest Q-slope, even at 4.2 K!
- The cryogenic efficiency at 4.2 K
 is a factor 3.6 better than at 2 K.
- Concerning power needed to cool dynamic losses, this cavity outperforms Nb cavities.
- Drawback today: maximum field.

SRF Activities at CERN – in the nineties (LEP)

• At LEP times, CERN had the largest SRF installation

K. Schirm (also featured on the Calendar photo!)

SRF Activities at CERN – today (1/2)

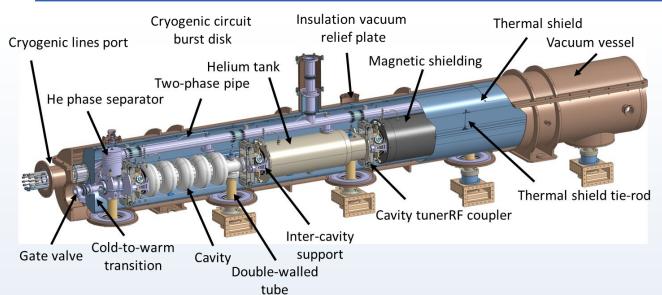
Cavity reception & tuning

HIE-Isolde cavity preparation

HIE-Isolde cavity substrate

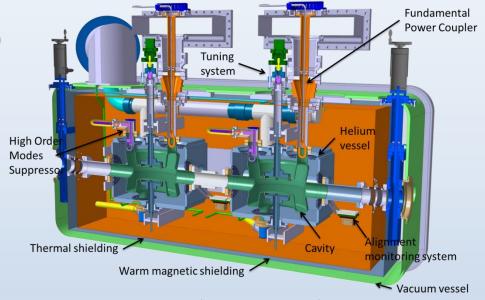
ΕP

K. Schirm


SM18 Upgraded and extended clean rooms with HP water rinsing und UP water station

HIE-Isolde cavity assembly

SRF Activities at CERN – today (2/2)



SPL cryomodule, 704 MHz Novel cavity suspension by FPC, cavities in bulk Nb

O. Capatina et al.

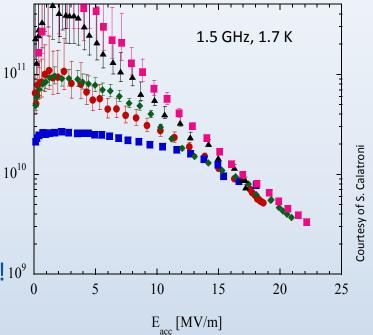
HL-LHC crab cavities, 400 MHz, 2-cavity prototype CM, cavities in bulk Nb (fabricated at Niowave)

SRF activities at **CERN**

The CERN SRF R&D has to cover many areas, accelerators, technologies. Where possible, choices were made to exploit synergies!

Programme	Frequency (MHz)	Technology	
LHC, spare and more	400	Nb on Cu	
LHC upgrade	800	Nb on Cu? Bulk?	
HIE-ISOLDE	101	Nb on Cu	
CRAB	400	Bulk Nb	
SPL (ESS)	704	Bulk Nb	
ERL-Facility, FCC-he	800	Bulk Nb	
FCC-ee, FCC-hh	400 & 800	Nb on Cu & bulk	

FCC SRF R&D

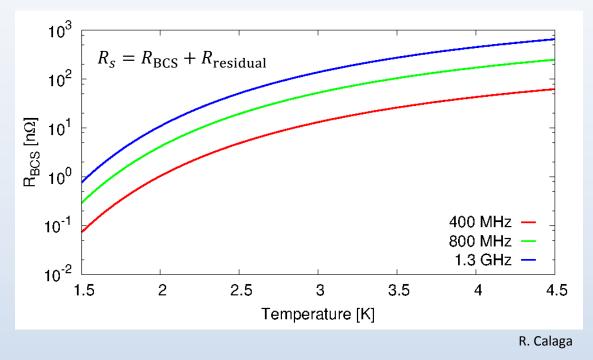

→ Tomorrow afternoon: S. Aull's presentation

Past CERN SRF was successfully based on thin film Nb sputtered on Cu.

S. Aull

- We believe that this technology has still large potential and wish to concentrate R&D (but not exclusively) on thin films.
- Advantages:
 - Substrate (Cu) with good thermal conductivity, easy to machine and work, mechanically and thermally stable, cheaper than Nb.
 - Very large Q_0 was demonstrated at low field.
 - Possible to tune material parameters (RRR) to minimize dissipation
- Disadvantage: Serious Q-slope!

First goal: Understand Q-slope & find cure! 10°


Erk.Jensen@cern.ch

Areas of R&D for FCC-ee

- Cryogenic capacity for CW, minimize static & dynamic heat load
 - Large G (and Q_0), preferably at 4.5 K. $(P_{\text{avg}} = \frac{R_S}{\overline{Q} \cdot G})$

 $R_{\rm BCS} \propto \omega^2$

Optimum frequency?

- $R_{BCS} \propto \omega^2$ favours lower f, but $P_{total} \propto \frac{E_{acc} \cdot R_S(f,T,B)}{f}$ favours lower frequency, where R_S is dominated by $R_{residual}$.
- There is an optimum f for cryogenic losses!

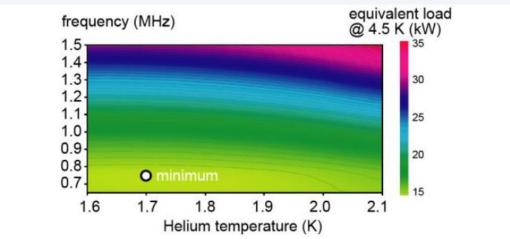
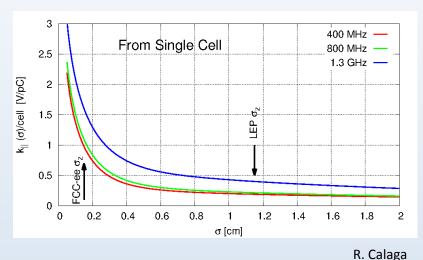
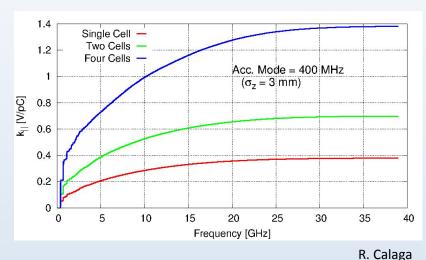


Figure 2: Equivalent dynamic and static losses at 4.5 K for the proton linac covering three β_g -sections (cf. text).

F. Marhauser, Cost Rationales for an SRF Proton Linac, IPAC-14, THPME053

At high beam current however, HOM power becomes excessive!

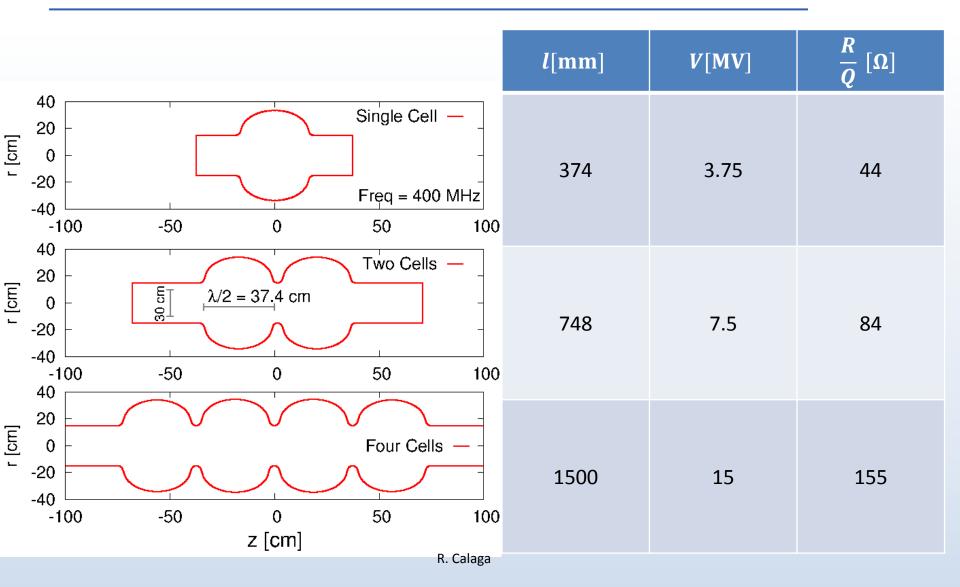

Loss factor vs. bunch length



•
$$k_{\mathrm{loss}} \propto \frac{1}{r_{\mathrm{iris}}} \sqrt{\frac{l_{\mathrm{gap}}}{\sigma_z}} \sqrt{N_{\mathrm{cell}}}$$

• Short bunches \rightarrow wide spectrum \rightarrow large HOM power $k_{\rm loss}~q~I_{\rm beam}$, 1 V/pC corresponds to 42 kW of HOM power

... favours lower frequency



... favours fewer cells/cavity

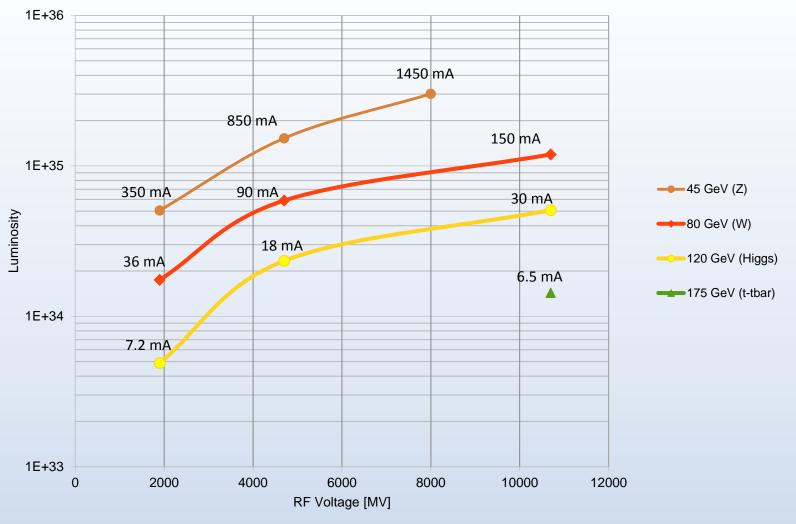
Cavity options under study

Again the FCC-ee parameter table

RF: 800 MHz, 400 MHz or a combination

FCC-ee (per beam)	Z	W	Н	tt
Energy [GeV]	45	80	120	175
Beam current [mA]	1450	152	30	6.6
SR power [MW]	50	50	50	50
Energy loss/turn [MeV]	30	330	1,670	7,550
RF voltage [MV]	2,500	4,000	5,500	11,000

• Presently considered:


- 400 MHz base system, compatible with large beam current for Z, W, H
- ... complemented with 800 MHz system with high gradient for tt
- Share cavities between both beams for high energy (factor 2)

Staging scenarios studied by U. Wienands

→ Wednesday morning: U. Wienands' presentation

Conclusion

- Recent R&D results in both SRF and high- η RF power are promising and motivating.
- These are exciting times for R&D, and FCC urgently needs R&D in these areas to make it more cost-effective & to perform better!
- or : FCC is a unique opportunity to push these technologies!
- There are strong synergies with other projects and studies –
 coordination is needed to optimally exploit these.
- Expertise and experience is distributed around the world we need international collaboration – we need you! Please come on board!

Thank you very much!

