
FCC SC magnet program

L. Bottura FCC Week, Washington March 22nd, 2015

The FCC playground

LHC 27 km, 8.33 T 14 TeV (c.o.m.) HE-LHC 27 km, **20 T** 33 TeV (c.o.m.) 3000 tons LTS 700 tons HTS FCC-hh 80 km, **20 T** 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS FCC-hh 100 km, **16 T** 100 TeV (c.o.m.) 6000 tons Nb₃Sn 3000 tons Nb-Ti

Outline

Wed 3/25

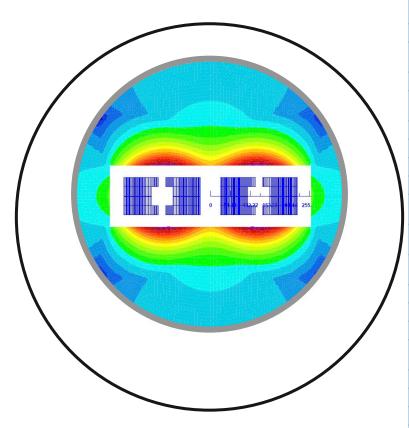
- Magnet focus is on FCC-hh: the other accelerators in the complex are within reach of present technology
- Identify high priority items and discuss R&D targets
- Outline a possible program

LTS magnets for FCC-hh

Task	Key targets	Description	Specific challenges
HH-MB	B=16 T D=50 mm L=15 m	Arc dipole	Magnet concept Quench performance and margin Field quality Specific cost
HH-MQ	G=450 T/m D=50 mm L=6 m	Arc quadrupole	High gradient Specific cost
HH-MBX	B=12 T D=60 mm L=12 m	Separation dipole	Heat removal and radiation hardness
HH-MBR	B=10 T D=60 mm L=10 m	Recombination dipole	
HH-MQY	G=300 T/m D=70 mm L=10 m	Matching/insertion quadrupole	
HH-MQX	G=225 T/m D=100 mm L=10 m	IR quadrupole	Field quality and alignment Heat removal and radiation hardness

HTS magnet options for FCC-hh

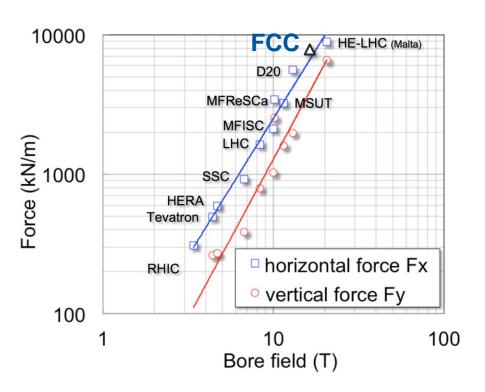
Task	Key targets	Description	Specific challenges
HTS-demo	B=5 T D=40 mm L=0.5 m	5 T magnet technology demonstrator (as from EuCARD2)	Quench performance and margin Quench detection and protection Field quality
HH-MB-HTS	B=20 T D=50 mm L=15 m	arc dipole for 80 km ring	Quench performance and margin Quench detection and protection Field quality Specific cost
HH-MQX-HTS	G=275 T/m D=100 mm L=10 m	IR quadrupole	Quench performance and margin Quench detection and protection Field quality and alignment Heat removal and radiation hardness

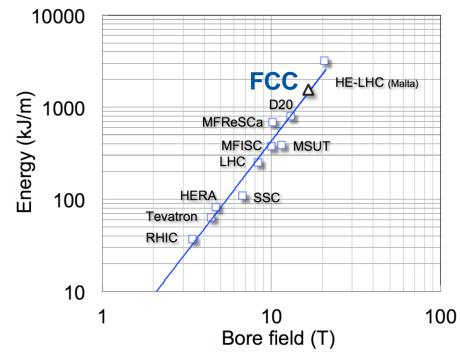

Other SC magnets for the FCC

Task	Key targets	Description	Specific challenges
SPS4FCC	B=11 T dB/dt = 35 mT/s	Injector dipole magnet for the SPS tunnel	Quench performance and margin Ramp-rate, powering and AC loss Specific cost and operation cost Fatigue
LHC4FCC	B=4 T dB/dt = 35 mT/s	Use of the LHC as FCC injector	Ramp-rate, powering, protection and AC loss Operation cost
FCC-HTS-INJ	B=1.1 T dB/dt = 50 mT/s H=120 mm ⁽¹⁾	Super-ferric booster magnet in the FCC tunnel based on HTS coils	Quench performance and margin Ramp-rate, powering and AC loss, SR load Specific cost and operation power/cost Compatibility with a FCC-ee booster
FCC-TL	B up to 5 T	Beam transfer lines, separate or combined function magnets	Cold mass and cryostat design for large magnet slope (8 %) and tilt (30 degrees) Specific cost
EE-MQX	TBD	IR SC quadrupole for FCC-ee	Magnet configuration (conical aperture) and design SR

MB – block @ 1.9 K

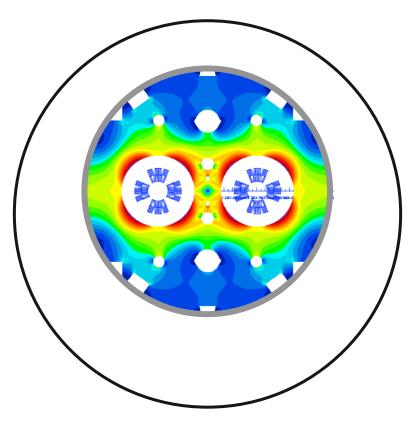
1 m diameter "cryostat" envelope Mechanical concept: Collared coils


Number of apertures	(-)	2
Aperture	(mm)	50
Inter-aperture spacing	(mm)	250
Operating current	(kA)	16.4
Operating temperature	(K)	1.9
Nominal field	(T)	16
b ₂ @ 2/3 Aperture	10-4	40.5
b ₃ @ 2/3 Aperture	10-4	2.8
Peak field	(T)	16.3
Margin along the load line	(%)	~20
Stored magnetic energy	(MJ/m)	3.2
Fx (per ½ coil)	(kN/m)	7600
Fy (per ½ coil)	(kN/m)	-3800
Inductance (magnet)	(mH/m)	22.8
Yoke ID	(mm)	-
Yoke OD	(mm)	700
Weight per unit length	(kg/m)	2500
Area of SC	(mm²)	6650
Area of cable low-Jc Nb ₃ Sn	(mm²)	7180
Area of cable high-Jc Nb ₃ Sn	(mm²)	10900
Area of cable Nb-Ti	(mm²)	4000
Turns Low-J Nb ₃ Sn per pole	-	19
Turns High J Nb ₃ Sn per pole	-	41
Turns Nb-Ti per pole	-	15



Note on scaling

 Forces in the FCC MB will be approximately 4 times larger, stored energy approximately 8 times larger than in the LHC



MQ – V4 @ 1.9 K

Number of apertures	(-)	2
Aperture	(mm)	50
Inter-aperture spacing	(mm)	250
Operating current	(kA)	26.1
Operating temperature	(K)	1.9
Nominal gradient	(T/m)	380
b ₆ @ 2/3 Aperture	10 ⁻⁴	0.0
b ₁₀ @ 2/3 Aperture	10-4	2.6
Peak field	(T)	10.5
Margin along the load line	(%)	20
Stored magnetic energy/unit length	(MJ/m)	0.59
Fx (per ½ coil)	(kN/m)	1496
Fy (per ½ coil)	(kN/m)	-2095
Inductance (magnet)	(mH/m)	1.2
Yoke ID	(mm)	184
Yoke OD	(mm)	620
Weight per unit length	(kg/m)	2000
Area of SC	(mm²)	1420
Area of cable Nb ₃ Sn	(mm²)	3200
Area of cable Nb-Ti	(mm²)	0
Turns per pole, inner layer	-	7
Turns per pole, outer layer	-	10

Matters of high priority

- LTS magnets: can we make them, reliable and costeffective?
 - Design and prototype the magnets that are crucial for the FCC-hh baseline collider (100 km ring, 16 T dipoles)
 - Push the performance of graded LTS (Nb₃Sn) accelerator magnets to its practical limit
 - Reduce training and operating margin
- HTS magnets: can we make them at all?
 - Prove the performance of a 5 T dipole as an insert to break the 20 T barrier
- What infrastructure is required to support the above tasks?

Conductor R&D (LTS & HTS)

Objectives:

- Boost the performance of Nb₃Sn to meet the targets as set by magnet design for an LTS FCC-hh
- Sustain HTS development for accelerator applications

Task	Key targets	Description
Nb ₃ Sn	D_{strand} : 0.71 mm J_{C} (16 T, 4.2 K) > 1500 A/mm ² DM (1 T,4.2 K) <150 mT (D_{fil} < 20 \Box m) RRR > 150 UL > 5 km	Develop conductor for increased J _C with respect to HL-LHC specifications, maintain high RRR, reduce magnetization, increase stability, withstand cabling
LTS cost	Cost(16 T, 4.2 K) < 5 USD/kA m	Perform cost analysis and identify drivers Process innovation and potential for industrialization to increase yield and UL, reduce cost
HTS	J _E (20 T, 4.2 K) > 600 A/mm ² UL > 100 m	Develop long length homogeneous YBCO tape and BSCCO wires, develop high current cables
Quench	Quench propagation speed and temperature limits characterization	Understand quench regimes and quench limits for LTS and HTS materials

Magnet technology R&D – 1/2

Objectives:

 Develop basic concepts and materials for the magnet technology required to achieve the LTS FCC-hh performance targets

Task	Description
Margin and training	Develop techniques and materials to reduce training and operating margin, covering conductor design, epoxy types, additives, bonding characteristics, glass charge homogeneity, impregnation technology. Understand and improve magnet training memory
Quench protection	Develop improved/alternatives for quench detection and protection, including interlayer quench heaters, inner layer heaters, pulsed current protection schemes
Heat transfer	Characterize and develop methods to increase heat removal from impregnated windings
Radiation and dose	Develop designs and materials that decrease the exposure to radiation loads, increase hardness, reduce activation

Magnet technology R&D – 2/2

Objectives:

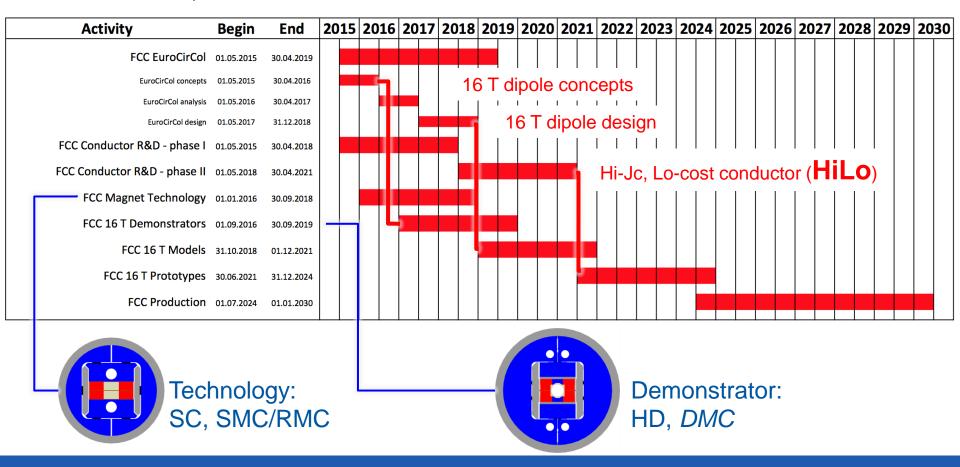
 Develop existing and novel techniques and materials as necessary for a cost-optimized LTS FCC-hh

Task	Description
Winding	Winding with additives, winding tooling, automated winding
Splices	Technology for splices among cables (Nb ₃ Sn to Nb ₃ Sn and Nb ₃ Sn to NbTi)
Grading	Develop robust technology for the grading of Nb ₃ Sn magnet winding (coil assembly methods, including interlayer splices)
Insulation	Develop improved insulation schemes (fibers, resins) compatible with HT cycles, higher voltage withstand, radiation hardness
Heat treatment	Understand and allow for dimensional changes during heat treatment, and related dimensional tolerances
Structure	Develop existing concepts (collars, bladder-and-key) and novel concepts for the magnet support
Cost	Analyze the cost of magnet manufacturing , examine low cost designs, and manufacturing procedure for cost reduction

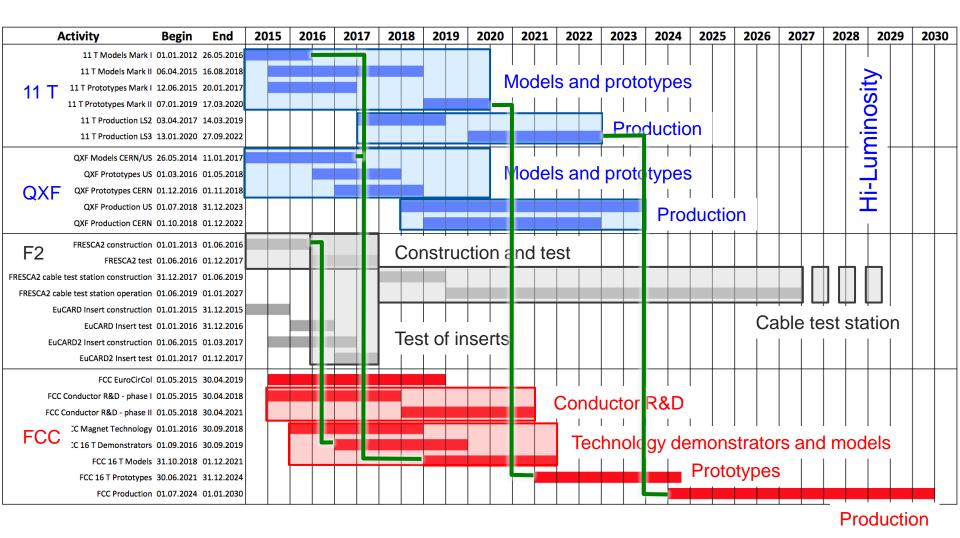
Infrastructure

Objectives:

 Material analysis, processing and diagnostic instruments appropriate to the advanced materials developed for the FCC magnets


Task	Description
SC materials testing	Very high field (18 T 20 T) test facilities for high critical current (2 kA and above) and magnetization measurements
	Imaging (e.g. nano-tomography), microscopy (e.g. SEM/TEM), and analytical facilities (e.g. XRD, neutron diffractography) in support to material analysis
SC cables testing	Cable test facility for high field (15 T and above) and high current (30 kA and above)
Material and components processing	Ovens (600900 °C, OPHT capability) for the processing of LTS and HTS materials.
Models and prototype magnet testing	SC magnet test facility for high current tests (30 kA and above), for HTS under variable temperature (up to 77 K)

A plan for discussion – 1/2


Focus on the "piece de resistance" (improperly translated as "main course"): LTS 16 T MB and conductor R&D

A plan for discussion – 2/2

Not too bad... when is the C+S review ???

An agenda for this week

- FCC-hh 16 T arc dipole and other magnets: discuss concepts, performance, margin, cost drivers
- HHMB-HTS 20 T arc dipole: follow-up developments
- LHC4FCC 4 T, 35 mT/s: is this an effective option?
- FCC-INJ 1.1 T, 50 mT/s: I believe in this technology!
- LTS conductor R&D: need performance increase (x 1.5) and cost reduction (x 1/3), is this HiLo Nb₃Sn realistic?
- Magnet technology: training and margin, protection, how can we improve?

