
CERN CH-1211 Geneva 23 Switzerland

the Large Hadron Collider project LHC Project Document No. FCC-ST-0001

CERN Div./Group or Supplier/Contractor Document No.

TE/BE/EN/PH

EDMS Document No.

Date: 2005-06-15

Work Package Description

FUTUR CIRCULAR COLLIDER

SPECIAL TECHNOLOGIES

Abstract

This document describes the FCC Special Technologies Work Package. The objective of this WP was to identify the challenges, the showstoppers and look towards opportunities for technology breakthroughs.

Indeed, this last argument will complement perfectly the Physic Cases to get an approval for the next step of the FCC Study.

This document compiles the sub-WP items with definition of scope, deliverables and milestones. CERN resource impact has been evaluated in order to provide feedback to potential international partners.

Prepared by :	Checked by :	Approval Leader :
Jose Miguel JIMENEZ (CERN) <u>Jose.miguel.jimenez@cern.ch</u>	Francis PEREZ (ALBA-SPAIN) Laurent TAVIAN (CERN) Brennan GODDARD (CERN) Francesco BERTINELLI (CERN)	Michael Benedikt <u>Michael.benedikt@cern.ch</u>
Olivier BRUNNER (CERN) Olivier.brunner@cern.ch	Davide TOMMASINI (CERN) Wolfgang HOFLE (CERN)	Franck Zimmermann Franck.zimmermann@cern.ch
	Roberto LOSITO (CERN) Rhodri JONES (CERN) Paolo CHIGGIATO (CERN) Mar CAPEANS (CERN) Andrzej SIEMKO (CERN)	
	Approval List :	

Page 2 of 58

(Hi	story of Changes	
Rev. No.	Date	Pages	Description of Changes	
0.0	2015-03-24	All	Initial submission	

Table of Contents

1	EUROCIRCOL WP4
1.1	CRYOGENIC BEAM VACUUM SYSTEM CONCEPTION
2	CRYOGENICS CHALLENGES
2.1	MAGNETIC REFRIGERATION FOR SC RF CAVITIES
2.2	PROXIMITY CRYOGENICS FOR FCC-HH9
3	BEAM TRANSFER CHALLENGES
3.1	KICKER GENERATOR WITH SOLID STATE SWITCH TECHNOLOGY
3.2	KICKER MAGNET R&D
3.3	SEPTUM MAGNET R&D
3.4	FAST ELECTRONICS, TRIGGERING AND SWITCH CONTROLS
4	MANUFACTURING TECHNOLOGIES
4.1	HIGH VELOCITY FORMING OF SUPERCONDUCTING RF STRUCTURES
4.2	ADDITIVE MANUFACTURING FOR RF STRUCTURES
4.3	NOVEL MATERIALS FOR THE HIGH-ENERGY FRONTIER
5	NORMAL CONDUCTING MAGNETS
5.1	RAD-HARD PLUGGABLE NORMAL CONDUCTING COILS AND ANCILLARIES 28
5.2	COMPACT MAGNETS & AIR COOLED WINDINGS
6	TRANSVERSE FEEDBACK SYSTEMS
6.1	TRANSVERSE FEEDBACK (TFB)
7	COLLIMATORS & DUMPS33
7.1	BEST MATERIALS FOR COLLIMATORS AND DUMPS?
7.2	BEAM INDUCED DAMAGE AND HYDRODYNAMIC TUNNELLING
7.3	REMOTE HANDLING IMPACT ON ACCELERATOR DESIGN & INFRASTRUCTURES 35
8	BEAM INSTRUMENTATION
8.1	BEAM LOSS MONITORS (BLM) FOR FCC-HH
8.2	BEAM SIZE MEASUREMENT FOR FCC-HH
8.3	BEAM INSTRUMENTATION (OTHERS)
9	BEAM VACUUM40
9.1	FCC HH VACUUM CHALLENGES
9.2	FCC EE VACUUM CHALLENGES
9.3	HTS COATING TECHNIQUES FOR IMPEDANCE MITIGATION
10	INSULATION VACUUM
10.1	HELIUM LEAKS MITIGATION44
11	RADIATION HARDNESS OF ELECTRONICS
11.1	RADIATION HARDNESS ASSURANCE (RHA)45
12	MAGNETS & MACHINE PROTECTION
12.1	POWERING, PROTECTION ARCHITECTURE FOR HIGH FIELD CIRCUITS
12.2	CONCEPT, ARCHITECTURE OF MACHINE PROTECTION & INTERLOCKS50
12.3	HTS MAGNET PROTECTION
ANN	EX A: MANDATE OF FCC SPECIAL TECHNOLOGY WP52

Page 4 of 58

ANNEX B: SPECIAL TECHNOLOGIES WBS STRUCTURE (DRAFT)53)
ANNEX C: CERN REFEREES FOR DIFFERENT ITEMS	·
ANNEX D: CERN RESOURCES (PERSONNEL & MATERIAL)55	,

FCC-ST-0001

Page 5 of 58

1 EUROCIRCOL WP4

1.1 CRYOGE Participant	CERN	KIT	INFN	ALBA	CIEMAT	STFC
Person	84	15	94	100	54	96
nonths	04	15	54	100	54	50
Гуре	All types					
Dbjectives	/1					
) Evaluate tl	he impact of	the arc des	sian on tech	noloav real	lirements	
•	•		-			acuum syste
						cold bore ar
(4) vacuur) proximely	er, ogernee	, (b) magnet	
		or advancing	a individual	technoloaie	es to meet th	e requiremen
,						of the phot
electrons of				- P		••••••••••••••••••••••••••••••••••••••
-	•	ation techn	iaues, e.a.	based on	freauent d	iscrete photo
absorbers	Je i se i					P
Description	of Work					
The cryogenic		um system	for the arc (linoles will	he designed	in close
, .						
terative inter		-		•	-	
performance i	requirement	s need there	efore to be (continuousl	y re-evaluate	ed and refined
Relevant aspe	cts include	beam-induc	ed heat load	ts including	ı synchrotror	n radiation,
vacuum stabil	ity, mechan	ical perform	ance, beam	screen co	olina concept	dynamic
effects such a			-			
					-	•
synchrotron r			,			
significantly a	ffect the acc	elerator and	d magnet de	esign. Optir	nisation has	large
performance i	mprovemen	t and cost r	eduction po	tentials.		
Task 4.1: Wo	-		•	-		
ALBA with the	assistance	of CERN cod	ordinates th	e work of a	II other tasks	s of this work
package to er	isure consist	tency of the	work accor	dina to the	project plan	and to
coordinate the						
						•
WPs. Coordina			-			
setting up of _l						
the informatic	n within the	e WP as well	as to the o	ther work p	backages. Th	e task covers
the organizati	on the annu	al meeting s	sessions de	dicated to t	he WP activit	ty review and
possible work		-				•
narinnanie ir		nd outeide t	-		-	
	om inside a		he consortiu	um. In part	icular this W	
coordination v	om inside a vith other W	Ps on the fo	he consortion Nowing sub	um. In part jects:	icular this W	P requires
coordination v - WP 2 (om inside a vith other W arc design a	Ps on the fo and lattice in	he consortion blowing sub ntegration):	um. In part jects: Task 4.2	icular this W relies on lay	P requires out and desig
coordination v - WP 2 (parame	om inside a vith other W arc design a ters for mo	Ps on the fo and lattice in delling and	he consortion blowing sub ntegration): creating a	um. In part jects: Task 4.2 conceptual	icular this W relies on lay design of tl	P requires out and desig he cryo-photo
coordination v - WP 2 (parame absorbe	om inside a vith other W arc design a eters for mo ers. Task 4.	Ps on the fo and lattice in delling and 6 provides	he consortion blowing sub ntegration): creating a input on ac	um. In part jects: Task 4.2 conceptual	icular this W relies on lay design of tl	P requires out and desig he cryo-photo
coordination v - WP 2 (parame absorbe based o	om inside a vith other W arc design a eters for mo ers. Task 4. on the meas	Ps on the fo and lattice in delling and 6 provides urement res	he consortion blowing sub ntegration): creating a input on ac sults.	um. In part jects: Task 4.2 conceptual ljusting the	icular this W relies on lay design of tl overall bea	P requires out and desig he cryo-photo am parameter
coordination v - WP 2 (parame absorbe based c - WP 5	om inside an with other W arc design a eters for mo ers. Task 4. on the meas (accelerator	Ps on the for and lattice in delling and 6 provides urement res magnet do	he consortion ollowing sub ntegration): creating a input on ac sults. esign): Tas	um. In part jects: Task 4.2 c conceptual ljusting the k 4.2 need	icular this W relies on layo design of the overall bea ds to ensure	P requires out and desig he cryo-photo

 WP 5 (accelerator magnet design): Task 4.2 needs to ensure compatibility between the conceptual design of the cryo-photon absorbers and the accelerator magnet design. Task 4.4 provides well aligned ranges for the operating temperature for the accelerator magnet and the beam-screen.

Task 4.2: Study beam-induced vacuum effects (ALBA, CERN)

ALBA will model and compute the cryogenic beam vacuum system, both in static and in time-constant (so called "dynamic") modes based on the input provided by CERN (D-4.4). CERN will contribute to the implementation of the time-constant modelling, providing expertise and training. The model will include synchrotron radiation effects. In a second stage, ALBA, in close correlation with CERN, will evaluate options to implement cryo-photon absorbers and will propose a conceptual design for these absorbers, which are compatible with the accelerator magnet design and accelerator layout.

Task 4.3: Mitigate beam-induced vacuum effects (STFC, CERN)

STFC will study different coatings to mitigate beam-induced electron cloud and ion instabilities on flat samples and on beam-screen prototypes provided by CERN. Compatibility of these coatings with cryogenics temperatures has to be demonstrated, in particular sticking and flaking of coatings after several cool down and warming up cycles. CERN will review the testing conditions, results and analysis and will provide the beam-screen prototypes. This work flows into the engineering design (D-4.3).

Task 4.4: Study vacuum stability at cryogenic temperature (INFN, CERN)

INFN Frascati will determine vacuum stability and adsorption isotherms at different cryogenic beam screen operating temperature ranges (D-4.1). It will perform complementary studies on beam-induced stimulated desorption phenomena by photons, electrons and ions. These studies rely mainly on experimental samples and require beam--screen prototypes supplied by CERN.

Task 4.5: Develop conceptual design for cryogenic beam vacuum system (CERN, CIEMAT)

CIEMAT will closely collaborate with CERN on the mechanical design of the cryomagnet beam screen, ensuring compatibility with fast magnetic transitions and cryogenic cooling concepts (D-4.3). CIEMAT and CERN will study and determine beam image current continuity and impedance issues on vacuum engineering and review the buckling safety factor accordingly. CERN will manufacture the beam-screen prototypes and qualify them in one of its magnet test stands at different beam screen temperatures. CIEMAT will assist CERN with instrumentation, measurements and qualification of the beam-screens.

Task 4.6: Measurements on cryogenic beam vacuum system prototype (KIT, INFN, CERN)

ANKA at KIT will be responsible for the "beam qualification" of the beam-screen prototype supplied by CERN (D-4.2). The goal is to determine synchrotron radiation heat loads and photo-electrons generation inside the beam-screen prototype. This beam-screen will be qualified with beam by installing the CERN COLDEX36 experiment in the synchrotron ring and expose the beam-screen prototype to significant levels of synchrotron radiation, comparable to the operation conditions at the hadron collider. CERN delivers to ANKA premises the COLDEX experiment together with all documents required to define and create the machine-COLDEX interfaces. ANKA will assist for the installation and integration of COLDEX carried out by CERN and INFN. INFN will commission the experiment and perform the measurements under CERN advice.

Page 7 of 58

Deliverables	Month
D4.1: Analysis of vacuum stability at cryogenic temperature	M22
Description of simulation environment and assumed input parameters.	
Description of samples and existing prototypes used as baseline.	
Documentation of vacuum stability and adsorption isotherms at	
different beam screen operating temperature ranges from simulations	
and laboratory tests.	
D4.2: Measurements of vacuum chamber at light source Description of	M28
the test setup and the measurement conditions including any aspects	
that may have an impact on the quality of the raw data and analysis.	
Set of raw data, associated calibration data and relevant environment	
operation data. Preliminary summary of the analysis, discussion of the	
results and conclusions.	
D4.3: Preliminary beam screen and beam pipe engineering design	M29
Drawings of the beam screen and surrounding beam pipe mechanical	
design as produced for the measurements at the light source.	
Description of the materials and manufacturing processes used to	
produce the test element.	
D4.4: Analysis of beam-induced vacuum effects Description of the	M36
simulated effects and comparison to the analysis of measurement data	
taken at the light source. Discussion and conclusion of the effects and	
description of efficacy, risks and potential impacts of mitigation	
measures. Suggestion for implementation and future work.	

FCC-ST-0001

Page 8 of 58

2 CRYOGENICS CHALLENGES

2.1 MAGNET	IC REFRIG	ERATION F	OR SC RF	CAVITIES	
Participant	CERN	CEA			
Person	0.5	3			
months					
Туре	STAFF	STAFF			

Objectives

Feasibility study on magnetic refrigeration allowing reaching temperature down to 1.6 K with a continuous refrigeration capacity of 5 kW.

Description of Work, Tasks with associated milestones

Based on its recent development for space applications, CEA/DSM/INAC-SBT will carry a feasibility study on magnetic refrigeration allowing reaching temperature down to 1.6 K with a continuous refrigeration capacity of 5 kW.

Task 1: Deliver a study report on new architectures and technologies for innovative superfluid helium refrigeration at 1.6 K based on magnetic refrigeration.

Deliverables	Month
D1. Deliver a study report on new architectures and technologies	M30
CERN Resources (Manpower) [Person.Months (PM)]	
STAFF	0.5
FELL/PJAS	0
PhD	0
CERN Resources (Material) [kCHF]	
Travels	10

FCC-ST-0001

Page 9 of 58

	CERN						
Participant Person	39						
months							
Гуре	All types						
Objectives			·				
Conceptual de	sign of the	proximity	cryogenics	for the:			
	onducting m		CC-hh)				
	creen (FCC						
Description of						<u>.</u>	
Large cryogen							
circumference							
of supercondu magnetic field							
superconducti							
1.9 K must be			•	•	-	•	
distribution sc							
							of up to 7-10
sectorized and							
km.	tant param	eter whicł	n strongly ii	mpacts th	e cryogei	nic syste	em is the
km. Another impor							
km. Another impor beam synchro cryogenic syst	tron radiati em on dedi	on which w cated bea	will deposit m screens	a specific operating	power of at a tem	f up to 4 perature	44 W/m in the e around 50 K
km. Another impor beam synchro cryogenic syst For the whole	tron radiati em on dedi accelerator	on which w cated bea , the total	will deposit m screens synchrotro	a specific operating on radiatic	power of at a tem n power	f up to 4 perature will read	44 W/m in the e around 50 K ch about
km. Another impor beam synchro cryogenic syst For the whole	tron radiati em on dedi accelerator	on which w cated bea , the total	will deposit m screens synchrotro	a specific operating on radiatic	power of at a tem n power	f up to 4 perature will read	44 W/m in the e around 50 K ch about
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium	tron radiati em on dedi accelerator or neon ha	on which w cated bea , the total s to be co	will deposit m screens synchrotro nsidered as	a specific operating on radiatic s cooling f	power of at a tem n power luid of th	f up to 4 perature will read ese bea	44 W/m in the e around 50 k ch about im screens.
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive	tron radiati em on dedi accelerator or neon ha er the PhD	on which w cated bea , the total s to be co thesis on t	will deposit m screens synchrotro nsidered as the concept	a specific operating on radiatic cooling f	power of at a tem n power luid of th n the coo	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets	on which w cated bea , the total s to be co thesis on t s operating	will deposit m screens synchrotro nsidered as the concept g at 4.5 or	a specific operating on radiatic s cooling f cual design 1.9 K and	power of at a tem n power luid of th n the coo of the be	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti compare the c	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets lifferent coo	on which w cated bea , the total s to be co thesis on t s operating oling and c	will deposit m screens synchrotro nsidered as the concept at 4.5 or distribution	a specific operating on radiatic s cooling f tual design 1.9 K and schemes	power of at a tem n power luid of th n the coo of the be in terms	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti compare the c and of piping o	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets lifferent coo	on which w cated bea , the total s to be co thesis on t s operating oling and c	will deposit m screens synchrotro nsidered as the concept at 4.5 or distribution	a specific operating on radiatic s cooling f tual design 1.9 K and schemes	power of at a tem n power luid of th n the coo of the be in terms	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti compare the c and of piping of Deliverables	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets lifferent coo dimensions	on which we cated bears, the total s to be control to be c	will deposit m screens synchrotro nsidered as the concept g at 4.5 or distribution mileston	a specific operating on radiatic s cooling f tual design 1.9 K and schemes e: 30.09.	power of at a tem n power luid of th n the coo of the be in terms	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to getic efficience
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti compare the c and of piping o Deliverables D1. Deliver th	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets lifferent coo dimensions e PhD thesi	on which we cated bears, the total s to be control to be c	will deposit m screens synchrotro nsidered as the concept g at 4.5 or distribution mileston onceptual c	a specific operating on radiatic s cooling f tual design 1.9 K and schemes e: 30.09. design	power of at a tem in power luid of th n the coo of the be in terms 2016.	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to getic efficience Month
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti compare the c and of piping o Deliverables D1. Deliver th CERN Resou	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets lifferent coo dimensions e PhD thesi	on which we cated bears, the total s to be control to be c	will deposit m screens synchrotro nsidered as the concept g at 4.5 or distribution mileston onceptual c	a specific operating on radiatic s cooling f tual design 1.9 K and schemes e: 30.09. design	power of at a tem in power luid of th n the coo of the be in terms 2016.	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to getic efficience Month
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti compare the c and of piping of Deliverables D1. Deliver th CERN Resour STAFF FELL/PJAS	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets lifferent coo dimensions e PhD thesi ces (Mang	on which we cated bears, the total s to be control to be c	will deposit m screens synchrotro nsidered as the concept g at 4.5 or distribution mileston onceptual c	a specific operating on radiatic s cooling f tual design 1.9 K and schemes e: 30.09. design	power of at a tem in power luid of th n the coo of the be in terms 2016.	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to getic efficience Month M36
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti compare the c and of piping of Deliverables D1. Deliver th CERN Resour STAFF FELL/PJAS PhD (Claudio I	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets lifferent coc dimensions e PhD thesi rces (Manp (otnig)	on which we cated bears the total s to be control to be co	will deposit m screens synchrotro nsidered as the concept distribution mileston onceptual c Person.Mo	a specific operating on radiatic s cooling f tual design 1.9 K and schemes e: 30.09. design	power of at a tem in power luid of th n the coo of the be in terms 2016.	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to getic efficience Month M36 3
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti compare the c and of piping of Deliverables D1. Deliver th CERN Resou STAFF FELL/PJAS PhD (Claudio I CERN Resou	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets lifferent coc dimensions e PhD thesi rces (Manp (otnig)	on which we cated bears the total s to be control to be co	will deposit m screens synchrotro nsidered as the concept distribution mileston onceptual c Person.Mo	a specific operating on radiatic s cooling f tual design 1.9 K and schemes e: 30.09. design	power of at a tem in power luid of th n the coo of the be in terms 2016.	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to getic efficience Month M36 3 0
km. Another impor beam synchro cryogenic syst For the whole 5 MW. Helium Task 1: Delive superconducti compare the c and of piping of Deliverables D1. Deliver th CERN Resour STAFF FELL/PJAS PhD (Claudio I	tron radiati em on dedi accelerator or neon ha er the PhD ng magnets lifferent coo dimensions e PhD thesi ces (Mang (otnig)	on which we cated bears the total s to be contracted bears on the contracted b	will deposit m screens synchrotro nsidered as the concept distribution mileston onceptual c Person.Mo	a specific operating on radiatic s cooling f tual design 1.9 K and schemes e: 30.09. design	power of at a tem in power luid of th n the coo of the be in terms 2016.	f up to 4 perature will read ese bea ling sch	44 W/m in the e around 50 k ch about im screens. emes of the eens, to getic efficience Month M36 3 0

FCC-ST-0001

Page 10 of 58

Participa						TECHNOLO)GY
	nt	CERN	KEK	ISL?	HDL?	Lisbon Univ.	
Person nonths		45					
Гуре		All types					
Objective							
 Investi Design kicker 	igate and pulses	individual s prototype a	s for FCC inj solid state s a solid state	witch chara	cteristics		rise time, sho
Contribut	1						
CERN		-	overall syste	em design, j	prototype de	esign, consti	ruction and
	test						
			erials, switch				
			ice characte	-	-	resistance	
HDL Lisbon			eedthroughs arx generato		ion lines		
Descripti		<u> </u>	arx generation	of concepts			
switches a	-	•		•	-	hich include	•

FCC-ST-0001

Page 11 of 58

The Work Package has been broken down into a number of Tasks:

- **Task 1:** Complete detailed proposal (objectives, timeline, identify lab space, secure resources, secure budget, and establish formal collaborations).
- **Task 2:** Study overall concepts and kicker system options, and define key parameters for FCC injection and extraction kicker generators.
- **Task 3:** Test and select individual components (switches and magnetic materials for cores), design of the prototype: technical report of tests and measurements on materials, and design report for prototype.
- **Task 4:** Construct the prototype system (generator, transmission lines, load): hardware for test and measurements.
- **Task 5:** Test the prototype: test bench; report of tests and measurements.
- Task 6: Document results and CDR write-up.

Deliverables	Month
D1: Detailed proposal	M2
D2: Concepts and parameters	M6
D3: Components and design	M24
D4: Construct prototype	M36
D5: Test prototype	M42
D6: Document results	M48
CERN Resources (Manpower) [Person.Months (PM)]	
STAFF	9
FELL/PJAS	36
PhD	0
CERN Resources (Material) [kCHF]	
Total budget estimate for prototype Inductive Adder with 26 layers	400
Year1	60
Year2	140
Year3	140
Year4	60

FCC-ST-0001

Page 12 of 58

Participar		DN								
		RN	KEK?							
Person	4	6								
nonths										
Гуре		ypes								
Objective			(E00 :							
			for FCC in			•				
			quired for	•	d FCC b	eam s	pectrum	;		
			en to achie							
	-	-	ow, broadb	and, beam	n coupli	ng imp	edance;			
). fast fie		•							
	•		igh voltage							
		of ade	quately coc	bling the fe	errite yo	эке				
Contribut				<u> </u>		_		-		
CERN			overall syst				onstruct	ion a	and tests	
KEK			erials, impe	dance calo	culation	S				
Descriptio										
-			field rise/fa			•	-			FCC
ollider. A	system w	ith sir	nilar param	neters will	be nee	ded for	extract	ion f	rom the	
3.3 TeV Hi	gh Energy	y Boos	ster.							
of the mag ounch stru	iours, the net yoke, cture is c	kicke , as th oupled	r magnets le power sp d via the kie	ectrum of cker impe	ience si the be dance t	am ger to the s	nt beam erated l tructure	ind by th	uced hea ne longitu	iting udinal
of the mag bunch stru Shielding c ast rise/fa The individ beam indu- ines in the magnet will constraints	iours, the inet yoke, cture is c of the mag II times, of ual bunch ced heati beam sp II have sn being ec	kicke , as th oupled gnet y good h n popu ng is s pectrui naller jual.	r magnets le power sp d via the kie oke from th nigh voltage ulation for F strongly dep m. In additi gaps, lowe	can exper pectrum of cker impec he circulat e behaviou FCC (1e11 pendent u ion, the sr	ience si the be dance t ing bea ur and c p+) is pon bui maller F	am ger o the s am is a compat similar nch-wic CC ape	nt beam herated l tructure compro- ibility wi to the p Ith and t erture m	i indi by th mise ith v prese the f eans	uced hea ne longitu e of achie acuum. ent LHC, frequency s that the	iting udinal eving but y
of the mag bunch stru Shielding of ast rise/fa The individ beam indu- ines in the nagnet will constraints The goals of 1. Defin spec 2. Dete bear area 3. Deve a	iours, the inet yoke, cture is c of the mag ll times, g lual bunch ced heati beam sp ll have sn being ec of Work-F ne key p cification of ermine sh m induced of ferrite elop the b b. adequa	kicke , as th oupled gnet y good h n popu ng is s bectrui naller jual. Packag barame of the ielding d heat e yoke beam s ately k	r magnets le power sp d via the kie oke from the nigh voltage ulation for F strongly dep m. In additi gaps, lower e are to: eters for F generators g required, ting which cooling an screen to a bw, broadb e-time;	can experi- bectrum of cker imped he circulat behaviou FCC (1e11 pendent u ion, the sr r current a CC injectio for antici does not d provides chieve: and, beam	ience si the be dance t ing bea ur and c p+) is pon bu naller F and eve on kick pated F require s adequ	am ger to the s am is a compat similar nch-wic CC ape entually cer mag	nt beam herated l tructure compro- ibility wi to the p th and the rture m faster r faster r am spec icant de rgin for	n inde by the mise ith v prese the f leans ise t n pa trum evelo relia	uced hea ne longitu e of achie acuum. ent LHC, frequency s that the ime, all o mallel wit n, to ach pments	ting udinal eving but y e other th the ieve a in the
of the mag bunch stru Shielding c ast rise/fa The individ beam indu- ines in the nagnet will constraints The goals of 1. Defin spec 2. Dete bear area 3. Deve ba bear	ours, the inet yoke, cture is c of the mag lual bunch ced heati beam sp label bunch ced heati beam sp label bunch being ec of Work-F ne key p cification of ermine sh m induced of ferrite elop the b b adequa b fast fie c accepta	kicke , as th oupled gnet y good h n popu ng is s bectrui naller jual. Packag of the ielding d heat e yoke beam s ately k ately k	r magnets le power sp d via the kie oke from the high voltage ulation for F strongly dep m. In additing gaps, lower de are to: eters for F generators g required, ting which cooling an screen to a pw, broadba	can experi- bectrum of cker imped he circulat cbehaviou CC (1e11 pendent u ion, the sr r current a CC injection for anticination does not d provides chieve: and, beam	ience si the be dance t ing bea ur and c p+) is pon bu naller F and eve on kick pated F require s adequ n coupli r.	am ger to the s am is a compat similar nch-wic CC ape entually cer mag CC bea e signif tate ma ng imp	nt beam herated l tructure compro- ibility wi to the p th and f erture m faster r faster r gnets, ir am spec icant de rgin for edance;	n inde by the mise ith v prese the f leans ise t n pa trum evelo relia	uced hea ne longitu e of achie acuum. ent LHC, frequency s that the ime, all o mallel wit n, to ach pments	ting udinal eving but y e other th the ieve a in the

manpower resources for several common themes, including impedance and thermomechanical simulations and measurements.

The Work Package has been broken down into a number of Tasks:

Task 1: Complete detailed proposal (objectives, timeline, identify lab space, secure resources, secure budget, and establish formal collaborations).

- **Task 2:** Study overall concepts and kicker system options, and define key parameters for FCC injection kicker magnets.
- Task 3: Simulation and optimization of beam screen geometries.
- **Task 4:** Studies to design and implement improved cooling.
- Task 5: Construct a prototype beam screen for installation in existing magnet (MKI?).
- **Task 6:** Test the prototype in the laboratory: beam impedance measurements and high voltage tests.
- Task 7: Document results and CDR write-up

Deliverables	Month
D1: Detailed proposal	M2
D2: Concepts and parameters	M6
D3: Beam screen design	M30
D4: Ferrite cooling design	M30
D5: Construct prototype screen	M36
D6: Test prototype	M42
D7: Document results	M48
CERN Resources (Manpower) [Person.Months (PM)]	
STAFF	10
FELL/PJAS	0
PhD	36
CERN Resources (Material) [kCHF]	
Total budget estimate for cooling design study and prototype beam	220
screen development	10
Year1	30
Year2	120
Year3	60
Year4	0

FCC-ST-0001

Page 14 of 58

Participa		MAGNET F		GSI	DNI		
Person	πτ	CERN 46	Wigner	651	BNL		
months		40					
Type		All types					
Objective		An types					
		narameters	for FCC ini	ection and e	extraction se	entum mag	inets:
				onducting ex			jiicto,
							on and massless
septa;				in debigin for	ingii neia	Lanibertot	
	uct a	nd test one	short proto	otype septur	n magnet		
Contribut							
		roposed rel	ies for the o	construction	of the sma	II-scale pro	totype on the
•		•		ration with a		•	
							pected to take
place at Cl					2	5	
CERN	Coo	ordination,	overall syste	em design, l	Lambertson	and mass	less septum
	des	sign, prototy	ype tests				
Wigner				· ·		assembly	for prototype
GSI				design study	/		
BNL			a design stu	dy			
Descripti	on o	of Work					
and 400 T which with	.m a i tod	re defined a ay's techno	as necessar logy would	y for injectir	ng and extra ction septa	acting the	-
and 400 T which with m long, at A more co and compl	.m a i tod oout mpa exity	re defined a ay's techno 75 individu ct septum s /, reliability	as necessar logy would al septum n system will j and comple	y for injectin mean extra nagnets in s provide serie exity; in add	ng and extra ction septa eries. ous econom lition, powe	acting the installatior ies in the i r consump	FCC beam, as of around 400 installation cost tion in all new
and 400 T which with m long, at A more co and compl facilities m	.m a i tod oout mpa exity nust	re defined a ay's techno 75 individu ct septum s /, reliability be a primar	as necessar logy would al septum n system will p and comple ry considera	y for injectin mean extra- nagnets in s provide serie exity; in ado ition in the o	ng and extra ction septa eries. ous econom lition, powe overall cost	acting the installatior ies in the i r consump optimisatio	FCC beam, as of around 400 installation cost tion in all new on. But most
and 400 T which with m long, at A more co and compl facilities m importantl	.m a i tod oout mpa exity nust y, a	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h	as necessar logy would al septum n system will p and comple ry considera igh field) se	y for injectin mean extra nagnets in s provide serio exity; in ado tion in the o eptum will a	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r	acting the installatior ies in the i r consump optimisation nore flexib	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the
and 400 T which with m long, at A more co and compl facilities m importantl design of t	.m a i tod oout mpa exity iust y, a :he ii	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and	as necessar logy would al septum n system will p and comple ry considera ligh field) se d extraction	y for injectin mean extra- nagnets in s provide seri- exity; in ado tion in the o eptum will a insertions,	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b	acting the installation ies in the i r consump optimisation nore flexib e essentia	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th	m a tod oout mpa exity nust y, a the in	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major d	as necessar logy would al septum n system will p and comple y considera igh field) se d extraction challenges a	y for injectin mean extrain nagnets in s provide serie exity; in add tion in the o eptum will a insertions, issociated w	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC	installation ies in the i r consump optimisatio nore flexib e essentia beams, su	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome ich as the stored
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an	.m a n tod pout mpa exity nust y, a the in ne ot d ma	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major d achine prote	as necessar logy would al septum n system will p and comple ry considera ligh field) se d extraction challenges a ection considera	y for injectin mean extrain nagnets in s provide seric exity; in add ition in the o eptum will a insertions, issociated w derations du	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC uring beam i	installation installation ies in the i r consump optimisation nore flexib e essentia beams, su injection a	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome ich as the storec nd extraction.
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative	m a n tod oout mpa exity nust y, a the in ne ot d ma ely, t	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major d achine prote the concept	as necessar logy would al septum n system will p and comple ry considera igh field) se d extraction challenges a ection consid of the 'mas	y for injectin mean extrain nagnets in s provide seric exity; in add ition in the o eptum will a insertions, issociated w derations du	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC iring beam i m with no a	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection an active coil o	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome ich as the stored and extraction. or yoke material
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in	m a n tod pout mpa exity nust y, a the in ne ot d ma ely, t the	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major d achine prote the concept beam path	as necessar logy would al septum n system will p and comple ry considera igh field) se d extraction challenges a ection consid of the 'mas between ze	y for injectin mean extrain nagnets in s provide seric exity; in add ition in the o eptum will a insertions, issociated w derations du ssless' septu	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC uring beam i m with no a n-field gap r	installation ies in the i r consump optimisation ore flexib e essentia beams, su injection an active coil of nay also a	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome och as the stored and extraction. or yoke material llow new
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in concepts f	m a n tod oout mpa exity nust y, a che in e ot d ma ely, t the or de reas	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major o achine prote the concept beam path ealing with ons, a Work	as necessar logy would al septum n system will p and comple ry considera ligh field) se d extraction challenges a ection consid of the 'mas between ze mis-steered	y for injectin mean extrain nagnets in s provide serif exity; in add tion in the optum will a insertions, issociated w derations du ssless' septu ro- and high or swept in s proposed t	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC uring beam i m with no a n-field gap r ojected or ex o investigat	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection an active coil of nay also a ktracted be	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome och as the stored nd extraction. or yoke material low new eams. d septum
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in concepts f For these designs, w	m a n tod pout mpa exity nust y, a che in ne ot d ma ely, t the or de rease vith a	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major o chine prote the concept beam path ealing with ons, a Work a design stu	as necessar logy would al septum n system will p and comple y considera- igh field) se d extraction challenges a ection consideration of the 'mass between ze mis-steered c-Package is idy of the su	y for injectin mean extrain nagnets in s provide serie exity; in add insertions, issociated w derations du ssless' septu ro- and high or swept in s proposed t uperconduct	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC which will b ith the FCC uring beam i m with no a n-field gap r ojected or ex o investigat ing septa, a	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection an active coil of nay also an ktracted be re advance ind the rea	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome ich as the stored nd extraction. or yoke material llow new eams. d septum lisation of at
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in concepts f For these designs, w least one p	m a n tod oout mpa exity nust y, a che in he ot the in e ot the in e ot the in or de rease	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major d chine prote the concept beam path ealing with ons, a Work a design stu	as necessar logy would al septum n system will p and comple y considera igh field) se d extraction challenges a ection consid of the 'mas between ze mis-steered c-Package is dy of the su	y for injectine mean extra- nagnets in service exity; in addition in the option insertions, issociated we derations du seless' septure for swept in service proposed to uperconduct inducting alto	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC which will b ith the FCC iring beam i m with no a n-field gap r o investigat ing septa, a gernatives (r	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection and active coil of nay also and ktracted be re advance ind the rea massless o	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome ich as the stored and extraction. or yoke material low new eams. d septum lisation of at r high-field
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in concepts f For these designs, w least one p Lambertsc	m a n tod pout mpa exity nust y, a che in he ot d ma ely, t the or de rease vith a proto on).	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major d achine prote the concept beam path ealing with ons, a Work a design stu otype for the A high-indu	as necessar logy would al septum n system will p and comple ry considera igh field) se d extraction challenges a ection consid of the 'mas between ze mis-steered c-Package is dy of the su e normal co ction Lambe	y for injectine mean extra- nagnets in second provide serie exity; in addi- insertions, insertions, insertions, insertions, issociated we derations du seless' septures for swept in seproposed to perconduct inducting alto ertson with a	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC uring beam i m with no a n-field gap r o investigat ing septa, a ernatives (r a supercond	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection and active coil of nay also and ktracted be re advance ind the rea massless o lucting coil	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome och as the storec nd extraction. or yoke material low new eams. d septum lisation of at r high-field (superferric
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in concepts f For these designs, w least one p Lambertso	.m a n tod pout mpa exity nust y, a che in e ot d ma ely, t the or de rease vith a proto on). /	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major o chine prote the concept beam path ealing with ons, a Work a design stu otype for the hould also b	as necessar logy would al septum n system will p and comple y considera- igh field) se d extraction challenges a ection consid of the 'mas between ze mis-steered k-Package is dy of the su e normal co ction Lambe pe considere	y for injectine mean extra- nagnets in second provide serie exity; in addi- insertions, insertions, insertions, insertions, issociated we derations du seless' septures for swept in seproposed to perconduct inducting alto ertson with a	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC uring beam i m with no a n-field gap r o investigat ing septa, a ernatives (r a supercond	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection and active coil of nay also and ktracted be re advance ind the rea massless o lucting coil	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome ich as the stored of extraction. or yoke material low new eams. d septum lisation of at r high-field
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in concepts f For these designs, w least one p Lambertso	.m a n tod pout mpa exity nust y, a che in e ot d ma ely, t the or de rease vith a proto on). /	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major d achine prote the concept beam path ealing with ons, a Work a design stu otype for the A high-indu	as necessar logy would al septum n system will p and comple y considera- igh field) se d extraction challenges a ection consid of the 'mas between ze mis-steered k-Package is dy of the su e normal co ction Lambe pe considere	y for injectine mean extra- nagnets in second provide serie exity; in addi- insertions, insertions, insertions, insertions, issociated we derations du seless' septures for swept in seproposed to perconduct inducting alto ertson with a	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC uring beam i m with no a n-field gap r o investigat ing septa, a ernatives (r a supercond	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection and active coil of nay also and ktracted be re advance ind the rea massless o lucting coil	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome och as the stored nd extraction. or yoke material low new eams. d septum lisation of at r high-field (superferric
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in concepts f For these designs, w least one p Lambertsc reducing p	.m a n tod pout mpa exity nust y, a che in he ot d ma ely, t the or de rease vith a proto on). / on) s	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major o achine prote the concept beam path ealing with ons, a Work a design stu otype for the A high-indu hould also b	as necessar logy would al septum n system will p and comple ry considera high field) se d extraction challenges a ection consider of the 'mas between ze mis-steered c-Package is logy of the su e normal co ction Lambe be considered	y for injectine mean extra- nagnets in second provide serie exity; in addi- insertions, insertions, insertions, insertions, issociated we derations du seless' septures for swept in seproposed to perconduct inducting alto ertson with a	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC which will b ith the FCC oring beam i m with no a n-field gap r o investigat ing septa, a cernatives (r a supercond ns of reachi	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection and active coil of nay also al ktracted be re advance ind the real massless of ucting coil ng maximi	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome och as the stored of extraction. or yoke material low new eams. d septum lisation of at r high-field (superferric um field and
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in concepts f For these designs, w least one p Lambertso reducing p The three - field	.m a n tod pout mpa exity nust y, a che in he ot d ma ely, t the or de rease vith a proto on). / on) s owe threa	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major o chine prote the concept beam path ealing with ons, a Work a design stu otype for the A high-indu hould also h r consumpt ads in the s ge and max	as necessar logy would al septum n system will p and comple y considera- igh field) se d extraction challenges a ection considera- of the 'mass between ze mis-steered c-Package is logy of the su e normal co ction Lamber of considera- ion.	y for injectine mean extraction nagnets in second provide series exity; in addition in the option in the option provide series exity; in addition in the option provide series insertions,	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC uring beam i m with no a n-field gap r o investigat ing septa, a cernatives (r a supercond ns of reachi	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection and active coil of nay also al ktracted be re advance ind the real massless of ucting coil ng maximi	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome och as the stored of extraction. or yoke material low new eams. d septum lisation of at r high-field (superferric um field and
and 400 T which with m long, at A more co and compl facilities m importantl design of t some of th energy an Alternative directly in concepts f For these designs, w least one p Lambertsc reducing p The three - field - mai	.m a n tod pout mpa exity nust y, a che in e ot the the the the the the the the the th	re defined a ay's techno 75 individu ct septum s /, reliability be a primar compact (h njection and her major o chine prote the concept beam path ealing with ons, a Work a design stu otype for the A high-indu hould also h r consumpt ads in the s ge and max	as necessar logy would al septum n system will p and comple ry considera igh field) se d extraction challenges a ection consid of the 'mas between ze mis-steered c-Package is logy of the su e normal co ction Lambe be considere ion.	y for injectine mean extraction nagnets in second provide series exity; in addition in the option in the option provide series exity; in addition in the option provide series insertions,	ng and extra ction septa eries. Dus econom lition, powe overall cost llow much r which will b ith the FCC uring beam i m with no a n-field gap r o investigat ing septa, a cernatives (r a supercond ns of reachi	acting the installation ies in the i r consump optimisation nore flexib e essentia beams, su injection and active coil of nay also al ktracted be re advance ind the real massless of ucting coil ng maximi	FCC beam, as of around 400 installation cost tion in all new on. But most ility in the I to overcome och as the stored and extraction. or yoke material low new eams. d septum lisation of at r high-field (superferric um field and

- relative leak field limits;

Page 15 of 58

- septum thickness with respect to gap height;
- magnetic length with respect to system length;
- magnetic material properties;
- dynamic limitations.

The goals of Work-Package are to:

- 1. Define key parameters for FCC injection and extraction septa, in parallel with the specification of the kickers (options for Lambertson, massless and SC septa);
- 2. Perform magnetic and mechanical designs for Lambertson AND massless septa prototypes
- 3. Construct and test one prototype Lambertson OR massless septum
- 4. Complete design study for SC septum

The Work Package has been broken down into a number of Tasks:

- **Task 1:** Complete detailed proposal (objectives, timeline, identify lab space, secure resources, secure budget, and establish formal collaborations).
- **Task 2:** Study overall concepts and septa options, and define key parameters for FCC injection and extraction septum magnets.
- Task 3: Literature survey and design study for cross-section of SC septum.
- Task 4: Survey and selection of magnetic material for high-field Lambertson septum.
- **Task 5:** Simulations and magnetic designs for massless and Lambertson.
- Task 6: Evaluation of options and construction of one prototype short septum magnet.
- **Task 7:** Test the prototype in the laboratory: field quality, insulation, vacuum, cooling.
- Task 8: Document results and CDR write-up.

Deliverables	Month
D1: Detailed proposal	M2
D2: Concepts and parameters	M6
D3: SC septum design study	M18
D4: Magnetic material selection	M18
D5: Magnetic design	M30
D6: Build prototype	M36
D7: Test prototype	M42
D8: Document results	M48
CERN Resources (Manpower) [Person.Months (PM)]	
STAFF	10
FELL/PJAS	0
PhD	36
CERN Resources (Material) [kCHF]	
Total budget estimate for design studies, materials tests and	380
prototyping	10
Year1	70
Year2	220
Year3	80
Year4	

FCC-ST-0001

Page 16 of 58

		S, TRIGGERING A]
Participant	CERN	Univ. of			
i un crespunc	CERT	Manchester			
Person	44				
months	A 11 -				
Туре	All types				
Objectives	mitigation	moncures for radia	tion to clostro	nice class to	haam
		measures for radia compact fast contro			
		liability triggering			
segmented	-	lability triggering	and Synchron		cpts for highly
Contributors					
CERN intends to	o seek con	tributions from coll	aborators. Eac	h participant	will supply
		ogy or facilities.			
CERN	Coordinat	tion, overall system		type constru	ction and tests
Manchester	Electronic	cs design, reliability	studies.		
Univ.					
Description of			on (on 11		lividual fast
		equire a large numb	•	,	
		y segmented and n f separate modules	•	•	2
		rformant, to provide	•		
-	•	physical scale of t	•		-
-		emands equipment			
		swappable, meanin			
malfunctioning	part and a	ctivate its redunda	nt part.		
				с	
		udies are required of		s for controls	s, triggering
		with the following t on on complex tri		apostic oloct	ropics in close
		Spontaneous trigg			
		ogies and technique			o be countaced,
_	-	electronics with the			ators. The large
		nagnet systems mo			
physical lim	its to the	size of the control	systems. The	se can be be	est achieved by
_		e electronic sensors			
		N, magnet etc.).			
		ct the network of			
	,	eldbus should be ce			ndancy. Remote
	-	firmware flashing s er inaccessible dev			wer and romoto
		be investigated t			
		ol electronics.		consic applic	
		n asynchronous bea	am dump for F	CC as a `not	allowed' failure
		nificant changes to	•		
	od in that	5			nu architecture
of always fir		HC. In addition tec	-		difficult problem
-	ing the dur	-	-		difficult problem
need to be f	ing the dur	HC. In addition tec	-		difficult problem
-	ing the dur	HC. In addition tec	-		difficult problem

FCC-ST-0001

Page 17 of 58

The Work Package has been broken down into a number of Tasks:				
Task 1: Review of current technologies; cooperate with other groups at CERN with radiation hardened electronics experience.				
•	diation			
Task 2: Study and test possible solutions to mitigate degradation by ra				
Task 3: Develop smaller sized sensors, interconnect them and centralis	se the			
computing power, which has to be redundant.				
Task 4: Proposition of new ultra-high-reliability triggering and synchron	nisation			
technologies.				
Task 5: Document results and CDR write-up				
Deliverables	Month			
D1. Technical report	M12			
D2. Radiation mitigation	M18			
D3. New sensor pilot project	M30			
D4. Triggering and synchronisation test bench	M42			
D5. Document results	M48			
CERN Resources (Manpower) [Person.Months (PM)]				
STAFF	8			
Fellow/PJAS (from mid-2015)	36			
PhD	0			
CERN Resources (Material) [kCHF]				
Total budget estimate for test bench, PCBs, components and FSU	200			
Year1	20			
Year2	60			
Year3	60			
Year4	60			

FCC-ST-0001

Page 18 of 58

4 MANUFACTURING TECHNOLOGIES

						UCTURES
Participant	CERN	Bmax (FR)				
Person months	56					
Туре	All types					
Objectives						
-	n geometrie ation and m	es for Super nodelisation	conducting of copper a	RF structu	res.	applied to coppe forming.
Description o	of Work					
necking and h free OFE copp can be axisym	a wide rango ydroforming er typically metric (e.g. cron-beam v	e and comb J. The meta used for pre LHC, ILC,	ination of te ls involved a eliminary tria SPL) or nor	echniques: are pure ni als. Geome n-axisymm	spinning, obium as etries usec etric (e.g.	deep drawing, well as Oxygen I for SRF cavities
The possible for merit: comple regularity of for	xity of set-u	ıp, equipme	nt and dies,	precision	of formed	
deformation, t	hrough a pr rger plastic only recentl e expected	ocess lastin deformation y been star in metallurg	ig a few mill n, smaller sp ted using el gy, geometr	liseconds, t pringback). ectro-hydra	hat allow: Application Application	,
(the Engineeri BE/RF (the Be Bmax (in Toul	HL-LHC cral ng Departm ams Depart ouse, Franco ture Circula	o cavities, c ent / Mecha ment/Radio e). EHF cou r Collider (F	ombining th anical and M -Frequency Id allow the CC)-type SF	le compete laterials En Group) wit design of t RF structur	nces at Cl gineering th the indu the crab c	ERN of EN/MME
- Numerio	ring and me cal modelling nce gained v	echanical de g and simul	esign ation of the	-		on the ike LS-Dyna and

- Mechanical testing including high-strain rate characterization of the materials (possibly exploiting the agreement between CERN and Politecnico di Torino which is leader in this field).
- CMM metrology
- Machining and sheet metal forming
- Electron beam welding to assemble the final structure

EN-MME would work closely in collaboration with BE-RF physicists and engineers.

Bmax would also perform advanced simulation and modelling work, and contribute their specific know-how in electro-hydraulic forming.

The result of the study is expected to be a thorough understanding of the process and the identification and influence of its parameters on copper and niobium, as well as a complete HL-LHC crab cavity prototype (in copper and/or niobium). In particular, the development of microstructure and of physical (e.g. Residual Resistivity Ratio, RRR) and mechanical properties induced by the regime of strain rates associated to the EHF process will be investigated as a function of the process parameters in the whole temperature range relevant for the application.

It should allow to introduce high velocity forming as a qualified, referenced alternative for the forming of accelerating structures throughout laboratories world-wide.

Task 1: learning period, first simple EHF tests on copper and simple geometries Milestone 1: Identification of key project issues and required contributions. Deliverable 1: Report on the state of sheet metal forming for SRF applications, potential of EHF, state-of-the-art, detailed project plan for numerical simulation, forming, testing.

Task 2: project programme

Milestone 2: production of simulations and formed components Deliverable 2: Report covering EHF tests, comparisons with numerical simulations, testing and qualification of produced structures in copper and niobium.

Task 3: application of know-how to structural components Milestone 3: production of a functional, complex geometry SRF component in niobium Deliverable 3: Final structural component, summary report of findings.

Page 20 of 58

Deliverables	Month
D1. First simple EHF tests	M6
D2. Project programme	M24
D3. Application of know-how to structural components	M6
CERN Resources (Manpower) [Person.Months (PM)]	
STAFF 5	20
PM/year	
FELL/PJAS (starting mid-2015)	36
PhD	0
CERN Resources (Material) [kCHF]	
Total budget estimate for test bench, PCBs, components and FSU	275
Year1	50
Year2	50
Year3	100
Year4	75

Page 21 of 58

4.2 ADDITIV	'E MANUFA	CTURING FC	R RF STRUCT	URES			
Participant	CERN	3T RPD (UK)	SST (DE)				
Person months	56	(0)					
Туре	All types						
Objectives	, in cypee						
 The results for the proof To provide manufactur for develop across indu materials, a Production 	duction of R much nee red by laser ing and intr stry sectors and the nee of a niobiur of Work	F accelerating ded data into and electron oducing new to The innovat d for good count n functional st	structures the beam sintering powders for th ive concept of nductivity and tructure.	oughout lab es of coppe i, as well as e AM proces the research UHV proper			
functional char is particularly difficult to fabr accelerator ap instrumentation By using AM te structures to b Collider (FCC). bulk (ancillarie popular AM ma however there scope. RF con	Description of Work Metal additive manufacturing (AM) allows the fabrication of complex geometries with functional characteristics, in high-quality fields including medical and aeronautical. AM is particularly relevant for prototypes or small series of parts, and for geometries difficult to fabricate with conventional processes. AM processes are attractive for accelerator applications, such as radiofrequency (RF) components and beam instrumentation, due to the design freedom and ability to personalise individual parts. By using AM technology RF physicists could explore entirely novel geometries and structures to be exploited in developing accelerators such as the Future Circular Collider (FCC). These structures could be either thin-walled (cavities, waveguides) or bulk (ancillaries like tuners or couplers), in a range of sizes. Currently the most popular AM materials include steels, aluminium and nickel alloys, and titanium; however there is increasing demand from different industries to expand the material scope. RF components require the use of high quality Oxygen free OFE copper and/or pure niobium powders, neither of which is common within the AM industry.						
	am sintering	g, that being b			spread in industry, nment potentially		
	J Additive M	anufacturing l	by combining a	•	n copper and/or ng the expertise in		
 Enginee Electron Material Analysis analysis Mechani residual 	ring and me beam weld s, chemical technique , CMM metr ical propert resistivity r	echanical desiding and operation analysis, met es including ology. ty testing, in ratio (RRR) ac	gn. ation. allurgy, powde SEM/FIB, mie ncluding cond ross different t	er characteri cro-optical uctivity and cemperature	observations, image		

Page 22 of 58

3T RPD (3T), with expertise in:

- Designing for additive manufacture.
- AM Material development.
- Optimisation of direct metal laser sintering (DMLS) parameters.
- Manufacturing and post-processing of complex parts.
- Analysis of DMLS powders.

SST, with expertise in:

- Electron beam welding and delivery technology.
- Powder delivery systems.
- Control of electron beam displacements.

Initial work on manufacturing with these powders has started at CERN, supported by the Knowledge Transfer (KT) fund. The project will therefore continue the characterisation of copper and niobium started under the KT Fund, focusing on the direct metal laser sintering method. The main project deliverables are the development, production, characterization, testing and documentation of proof-ofprinciple samples with high electrical conductivity, good mechanical properties and suitability for Ultra High Vacuum (UHV) applications. The samples include those for tensile testing, RRR measurements and for assessing the suitability for UHV and RF applications, in both copper and niobium. Specific attention would be dedicated to identification of suitable powders and optimisation of their characteristics. Finally prototype RF structures with complex geometries will be produced in copper and niobium.

Task 1: Definition of powder specification and property requirements for optimised parts - report based on a literature review and discussion with industry.

Task 2: Fabrication of test parts.

- Design and fabrication of test parts for analysis of mechanical, conductivity, RRR and UHV properties.
- Each parameter could be analysed individually allowing for a steady flow of test pieces.

Task 3: Selection of design and fabrication parameters for optimised part.

- Pieces will be built incorporating the learnings from previous milestones.
- Various simple shapes will be built and tested.

Task 4: Fabrication of final part.

• Final complex geometry component built with optimised properties.

Deliverables	Month
D1. Report: mechanical properties of copper parts (mechanical,	M24
conductivity).	
D2. Report: mechanical properties of niobium parts (mechanical,	M24
conductivity).	
D3. Report: suitability of parts for UHV applications.	M36
D4. Dissemination of results through journal paper(s) and conference presentation(s).	M48

FCC-ST-0001

Page 23 of 58

CERN Resources (Manpower) [Person.Months (PM)]					
STAFF 5	20				
PM/year					
FELL/PJAS (starting mid-2015)	36				
2 FTE / year for a more complete programme.					
PhD	0				
CERN Resources (Material) [kCHF]					
Total budget estimate for test bench, PCBs, components and FSU	300				
Year1	25				
Year2	75				
Year3	100				
Year4	100				

Page 24 of 58

Participant	CERN	GSI	Politecnico di Torino	Brevetti Bizz	BNL?	Other industry(ies)
Person	158					
nonths						
уре	All types					
Objectives	d roviow pł		ite of ovicting	matariala	for Doom I	ntorpating Davies
•		•	-) materials i	for Beam I	nteracting Device
	eme energ	<i>,</i> ,		l novel ma	toriale wit	h the potential to
-						ig with the particle
beam.		2 chanenge			5 interaction	
	l extend s	tate-of-the	e-art_simulat	ion metho	ds to the	FCC high energy
frontier.						l ee mgn energ
	esting capa	ability in Hi	RadMat and	explore con	nplementa	ry testing method
			ergy and inte			, 5
Description	-					
he introducti	on of new,	extremely	energetic pa	article accel	lerators bri	ngs about the
need for adva	nced clean	ing and pr	otection syst	ems, such a	as collimat	ors, in order to
						dented levels.
Beam Interac	ting Device	s (Collima	tors, Dumps,	Absorbers	etc.) must	adopt materials
			· · ·			nd densities)
						thermal shock
esistance, th			• •			
	-			-		and resistance to
adiation dam						
when the ene	rgy and int	ensities of	the Future C	Lircular Coll	ider are ta	ken into account.
			newience and		siaa hawa h	
				•		een built over
	•	-				ction of highly
						ynamic codes aterial samples
5 /		, ,,			5	
-		-				planned at CERN
naterials, pos						of novel advanced
properties (wi						
ending).	an the supp		Knowledge		iu, interna	tional paterit
	t notwork f	ocused on	these tonics	has been e	establiched	with a number o
			•			ies, as well as
with other rele				inversicies e		ies, as well as
			••			
Building upon	this experi	ence (nart	icularly deve	loped in th	e frame of	the LHC
	•	••	•			RD, EuCARD2,
						ovel materials
						scenarios relevan
or the FCC, a						
					•	
•	Inder extre			ain rates r		
ressures and	Inder extre			-		· •
pressures and			proaching the	-		

Beyond the relevance for high-energy physics, the development and characterisation of new materials may be of interest for other applications where equipment may be exposed to high intensity radiation, high-density energy deposition and large temperature excursion such as thermal management for electronics, high temperature space applications, and fusion and fission reactors.

EN-MME will use its internal resources and expertise in:

- Engineering and mechanical design
- Numerical modelling and simulation of the interaction between particle beams and matter relying on implicit and explicit FEM methods and on hydrodynamic codes like LS-Dyna and Autodyn.
- Thermo-physical characterization exploiting in-house facilities (LFA, DSC, high temperature dilatometry).
- Metallurgy, SEM/FIB analysis, non-destructive (NDT) and destructive (DT) testing.
- Mechanical testing including high-strain rate and high-temperature characterization of the materials (in collaboration with Politecnico di Torino).
- Machining, EB welding, assembling.
- CMM metrology.

Additional groups implied include BE-ABP, TE-MPE and EN-STI.

Task 1: characterization campaign of existing materials used for Beam Interacting Devices (mostly carbon-based) to define their limits against FCC parameters, relying on thermo-physical measurements, metallurgical investigations, quasi-static and dynamic mechanical testing, radiation damage assessment.

Task 2: building upon results gathered during the HL-LHC Collimation project and collaboration programs (EuCARD, EuCARD2 and HiLumi), continue the development of a new class of materials (such as metal-catalysed highly ordered graphite), optimizing their manufacturing processes, exploring robust and shock-resistant coatings, increasing their thermal, mechanical, electrical, radiation-damage and UHV performances. Additionally, study novel design solutions embarking such materials, particularly for collimators, in view of FCC challenges.

Task 3: interaction of 50 TeV proton beams with matter entails extreme and little explored phenomena like high intensity shock waves, extensive changes of material density, explosions, spalling, hydrodynamic tunnelling, plasma generation etc. To simulate such events, one must resort to state-of-the-art explicit finite element techniques and hydrodynamic codes. In order to get reliable results, relevant scenarios must be provided by Beam Dynamics simulation tools while an efficient coupling with energy deposition codes, such as FLUKA, must be established; furthermore, accurate constitutive models for materials, both traditional and innovative, must be built. This task will focus on the optimization of simulation algorithms, comparing results of complementary tools, such as Autodyn, LS-Dyna and BIG2 (in collaboration with TE-MPE group and GSI, developer and proprietary of BIG2 code) for extreme cases and on the development of material constitutive models

(equations of state, strength models, failure models ...), partly in the frame of international collaborations.

Task 4: controlled tests under high intensity particle beams are of paramount importance to validate and qualify any component directly exposed to beam interaction. CERN HiRadMat facility offers a unique opportunity to perform such experiments. A large expertise has been built up in recent years in the design of extensively instrumented test-benches allowing to acquire, mostly in real time, the effects induced on material specimens and full components (such as LHC Collimator jaws) by intense beam pulses. This task aims at the improvement and optimization of future experiments in HiRadMat, allowing to collect even more information on material and structure response, to be used to compare simulation results and improve simulation techniques. In order to further extend experimental capabilities, reaching conditions closer to those encountered in the FCC, complementary test setups such as high energy laser ablation facilities may be explored in collaboration with European laboratories.

Deliverables	Month
D1. Detailed Proposal (specification, timeline, resources, collaborations setup)	M4
D2.Characterization campaign of existing materials	
D2-1. Data analysis of performed experimental tests and literature review	M18
D2-2. Report on existing materials	M24
D3. Research and development of novel materials	
D3-1. Optimize manufacturing processes of advanced materials	M18
D3-2. Explore and test advanced coating concepts	M24
D3-3. Design proposal for advanced collimators	M36
D3-4. Develop and characterize novel graphitic materials	M48
D4. Simulation methods for the high energy frontier	
D4-1. Identify suitable numerical tools for simulations of extreme phenomena	M12
D4-2. Consolidate database on constitutive models for existing materials	M18
D4-3. Coupling between FLUKA and Autodyn for extreme cases	M24
D4-4. Simulate and benchmark extreme cases with alternative hydrodynamic codes	M36
D5. Experimental methods and tests	
D5-1. Perform experiment in HiRadMat on multi-material test-bench	M18
D5-2. Thermo-physical and metallurgical testing of existing materials	M18
D5-3. High strain-rate, high temperature mechanical testing of advanced materials	M36
D5-4. Explore and perform alternative testing methods with high energy facilities	M48

FCC-ST-0001

Page 27 of 58

CERN Resources (Manpower) [Person.Months (PM)]					
STAFF (only EN/MME)	50				
12 PM/year					
FELL/PJAS (starting mid-2015)	72				
PhD (with TE/MPE)	36				
CERN Resources (Material) [kCHF]					
Total budget estimate for R&D studies, material tests and	950				
characterization	150				
Year1	350				
Year2	250				
Year3	200				
Year4					

Page 28 of 58

5 NORMAL C	ONDU	CTING	MAGN	ETS		
5.1 RAD-HARD	PLUGO	ABLE N	ORMAL	CONDUCTING	G COILS AN	D ANCILLARIES
Participant	CERN	JPARC	BINP	COCKCROFT		FRAUNHOFER
Person months	42.5					
Туре	All types					
Objectives			1	•		
magnets capa exposed to r ozone.2. Develop fast3. Integrate the construction	able of w adiation connecta e above	ithstandir doses of able radia e mentio	ng opera 5 300 M Ition res ned co	ational voltages IGy, in present Sistant hydrauli nnection in g	s of up to 5 k ce of humid c and electri llobal solution	normal conducting V after having been ity and possibly of cal joints on to enable the e remotely handled
and aligned.						
Contributors			ala a 11 a 4		and with C	ERN assuming the
role of coordinat	or. The t ble magr f work".	echnolog nets, and	ies deve shall ta	eloped here sh	all be applica t the require	able both for dipole ments anticipated
		tion and a				
BINP				y Utkin <u>A.V.Utk</u> ng electrical ar		
COCKCROFT				arke jim.clarke connections for		d coils
Danfysik	Impregi resin wi	nated coi th fiber-c	ls (cyan glass or	mica)		ation resistant
FRAUNHOFER	Irradiat	ion tests	in the B	GS facility		
Description of						
in case of HL-LH 7 (collimators), a	nificantly or the ac C it is es after 6 m mSv/h, v	the radia ccess of p timated to onths of with a pe	ation do ersonne hat the cooling ak of at	se to equipmened for maintena environmenta at 40 cm from pout 10 mSv/h	nt, and gene nce and repa I radiation le the magnet	rate "hot" areas air. As an example, vels around point
higher tha taking into b) integrated	t of magi materials n what t account in n/disconi emotely.	nets with s withstar ypically c t the num a such nection a	the foll nding ra onsidere iber of le n a nd align	owing features diation doses o ed as reference oad cycles for a way that ment can be p	: of about one of state of tl n expected l their ins	ion and aims at order of magnitude he art technologies, ife time of 20 years pection, possible thin a few minutes,

Page 29 of 58

 develop materials and manufacturing processes for "super ra In this frame it is to be underlined that a qualification and already starting in the frame of the LHC Consolidation Project Project and therefore the work to be carried out will be complement to the work programmed in the above mentione 	testing program is t and of the HL-LHC in synergy and in d projects.
2. develop technologies and design for reliable, radiation hard, fa	ist electrical fittings,
compatible with remote handling 3. develop technologies and design for reliable, radiation h	ard fast hydraulic
fittings, compatible with remote handling	ara, last fryaraane
 develop suitable mechanical systems to allow fast or remote the connection and disconnection. 	nandling, alignment,
For each of these points we can schematically distinguish the follow	ing tasks:
Task 1: Review of present technologies: performance, limitations a	nd potential for
development Task 2: Set-up of an experimental program to complete the inform	ation whore
necessary	
For example there is little or no information about degradat performance organic materials at radiation doses above 10- mechanical and dielectric properties, possibly including com humidity and presence of oxygen.	-30 MGy, for both bined effects of
Task 3: Identify and design one or several solutions potentially fulf Task 4: Set-up an experimental program to validate the above solutions	
Task 3: Identify and design one or several solutions potentially fulf Task 4: Set-up an experimental program to validate the above solu Deliverables	utions
Task 4: Set-up an experimental program to validate the above solu	
Task 4: Set-up an experimental program to validate the above soluDeliverablesD1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC)	Month
Task 4: Set-up an experimental program to validate the above solution Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test	Month Month M12
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) 	Month Month M12 M18
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state 	Month Month M12 M18 M24
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low 	Month Month M12 M18
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state 	Month Month M12 M18 M24
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose 	Month Month M12 M18 M24
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2: Hydraulic fittings 	Month M12 M18 M24 M36
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2: Hydraulic fittings D2-1: Review of the state of the art, proposals of technologies and 	Month M12 M18 M24 M36 M12 M12
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2: Hydraulic fittings D2-1: Review of the state of the art, proposals of technologies and related test plan 	Month M12 M12 M18 M24 M36 M36 M12 M12 M18
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2-1: Review of the state of the art, proposals of technologies and related test plan D2-2: Results of the test campaign on virgin samples 	Month M12 M18 M24 M36 M12 M12
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2: Hydraulic fittings D2-1: Review of the state of the art, proposals of technologies and related test plan 	Month M12 M12 M18 M24 M36 M36 M12 M12 M18
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2-1: Review of the state of the art, proposals of technologies and related test plan D2-2: Results of the test campaign on virgin samples D2-3: Results of the test campaign on samples submitted to the 	Month M12 M12 M18 M24 M36 M36 M12 M12 M18
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2-1: Review of the state of the art, proposals of technologies and related test plan D2-2: Results of the test campaign on virgin samples D2-3: Results of the test campaign on samples submitted to the relevant life cycle 	Month M12 M12 M18 M24 M36 M36 M12 M12 M18
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2-1: Review of the state of the art, proposals of technologies and related test plan D2-2: Results of the test campaign on virgin samples D2-3: Results of the test campaign on samples submitted to the relevant life cycle D3-1: Review of the state of the art, proposals of technologies and related test plan 	Month Month M12 M12 M18 M24 M36 M12 M18 M24 M12 M18 M24
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2-1: Review of the state of the art, proposals of technologies and related test plan D2-2: Results of the test campaign on virgin samples D2-3: Results of the test campaign on samples submitted to the relevant life cycle D3-1: Review of the state of the art, proposals of technologies and related test plan D3-1: Review of the state of the art, proposals of technologies and related test plan D3-2: Results of the test campaign on virgin samples D3-1: Review of the state of the art, proposals of technologies and related test plan D3-1: Review of the state of the art, proposals of technologies and related test plan 	Month Month M12 M12 M18 M24 M36 M12 M18 M24 M18 M24 M12 M12
Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1 st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2 nd tests with full number of fatigue cycle and high radiation dose D2: Hydraulic fittings D2-1: Review of the state of the art, proposals of technologies and related test plan D2-2: Results of the test campaign on virgin samples D2-3: Results of the test campaign on virgin samples D2-3: Results of the test campaign on samples submitted to the relevant life cycle D3: Electrical connections D3-1: Review of the state of the art, proposals of technologies and related test plan D3-2: Results of the test campaign on virgin samples D3-1: Review of the state of the art, proposals of technologies and related test plan D3-2: Results of the test campaign on virgin samples D3-1: Review of the state of the art, proposals of technologies and related test plan D3-2: Results of the test campaign on virgin samples D3-3: Results of the test campaign on samples submitted	Month Month M12 M12 M18 M24 M36 M12 M18 M24 M12 M18 M24
 Task 4: Set-up an experimental program to validate the above solu Deliverables D1: Coil Insulation (Complement to activities in the frame of LHC Consolidation and HL-LHC) D1-1: Review of the available information and identification of the 2-3 most interesting technologies, proposal of a detailed test plan (radiation mechanics and electric) D1-2: Test of the selected technology in the virgin state D1-3: Result of 1st tests after low number of fatigue cycle and low radiation dose D1-4: Result of 2nd tests with full number of fatigue cycle and high radiation dose D2-1: Review of the state of the art, proposals of technologies and related test plan D2-2: Results of the test campaign on virgin samples D2-3: Results of the test campaign on samples submitted to the relevant life cycle D3-1: Review of the state of the art, proposals of technologies and related test plan D3-1: Review of the state of the art, proposals of technologies and related test plan D3-2: Results of the test campaign on virgin samples D3-1: Review of the state of the art, proposals of technologies and related test plan D3-1: Review of the state of the art, proposals of technologies and related test plan 	Month Month M12 M12 M18 M24 M36 M12 M18 M24 M12 M18 M24

FCC-ST-0001

Page 30 of 58

CERN Resources (Manpower) [Person.Months (PM)]				
STAFF	10.5			
FELL/PJAS (needed as from beginning 2016)	24			
PhD	0			
CERN Resources (Material) [kCHF]				
Total budget estimate for test bench, PCBs, components and FSU	500			
Year1	50			
Year2	50			
Year3	250			
Year4	150			

FCC-ST-0001

Page 31 of 58

5.2 COMPAC Participant	CERN			_					
Person	39								
months	39								
Туре	All types								
Objectives	All types								
1. Compact m	agnote do		te and foot	arint may	V roc	ultin	nora	v officion	<u></u>
2. Air-cooled			•	•	,				Cy
Description of		w current	uensity for	Teuuceu	ener	gy cor	isump		
Compact mag			te and foo	toriot o		ocult	in on	orav	
<u>efficiency</u>	<u>jiiets, ueci</u>	ease cos		<u>uprinit, n</u>	llay i	esuit	in en	leigy	
	anortura	oquiroo hi	ah produisi	n and tial	h+ +~!	oro		nact an	
Task 1: Small									
	and measu	irement m	iethods) – t	his work		evant	to CL	IC.	
-									
-					satur	ation l	evel,	reduce t	he
Task 2: Alterr	ative yoke	materials	(Fe-Co) to	increase					
Task 2: Alterr	ative yoke	materials	(Fe-Co) to	increase					
Task 2: Alterr yoke dimensio	ative yoke ns and weig	materials	(Fe-Co) to	increase					
Task 2: Alterr yoke dimensio <u>Air-cooled wi</u>	ative yoke ns and wei <u>c</u> i ndings	materials ght – this v	(Fe-Co) to work is rele	increase want to n	nedic	al app	licatio		
Task 2: Alterr yoke dimensio	ative yoke ns and wei <u>c</u> i ndings	materials ght – this v	(Fe-Co) to work is rele	increase want to n	nedic	al app	licatio		P)
Task 2: Alterr yoke dimensio <u>Air-cooled wi</u> Task 3: Study Deliverables	native yoke ns and wei <u>c</u> indings low curren	materials ght – this v t density f	(Fe-Co) to work is rele	increase want to n energy c	nedic	al app mptior	licatio	ns (TULI	P) Ith
Task 2: Alterr yoke dimensio <u>Air-cooled wi</u> Task 3: Study Deliverables D1. Small ape	iative yoke ns and weig indings low curren rture, requin	materials ght – this v t density f res high pr	(Fe-Co) to work is rele for reduced recision and	increase want to n energy c	nedic	al app mptior	licatio	ns (TULI Mon	P) 1th 6
Task 2: Alterr yoke dimensio <u>Air-cooled wi</u> Task 3: Study Deliverables D1. Small aper D2. Alternative	ative yoke ns and weig indings low curren rture, requin e yoke mate	materials ght – this v t density f res high pr erials (Fe-0	(Fe-Co) to work is rele for reduced recision and Co)	increase want to n energy c d tight tol	nedic consu leran	al app mptior ces	licatio	ns (TULI Mon M3	P) Ith 6 6
Task 2: Alterr yoke dimensio Air-cooled wi Task 3: Study Deliverables D1. Small ape D2. Alternative D3. Study low	ative yoke ns and weig indings low curren rture, requine yoke mate current der	materials ght – this v t density f res high pr erials (Fe-C nsity for re	(Fe-Co) to work is rele for reduced recision and Co) educed ener	increase want to n energy c d tight tol	nedic consu leran	al app mptior ces	licatio	ns (TULI Mon M3 M3	P) Ith 6 6
Task 2: Alterr yoke dimensio <u>Air-cooled wi</u> Task 3: Study <u>Deliverables</u> D1. Small aper D2. Alternative	ative yoke ns and weig indings low curren rture, requine yoke mate current der	materials ght – this v t density f res high pr erials (Fe-C nsity for re	(Fe-Co) to work is rele for reduced recision and Co) educed ener	increase want to n energy c d tight tol	nedic consu leran	al app mptior ces	licatio	ns (TULI Mon M3 M3	P) 1th 6 6 6
Task 2: Alterry yoke dimension Air-cooled with Task 3: Study Deliverables D1. Small aper D2. Alternative D3. Study low CERN Resour STAFF	ative yoke ns and weig indings low curren rture, requine yoke mate current der	materials ght – this v t density f res high pr erials (Fe-C nsity for re	(Fe-Co) to work is rele for reduced recision and Co) educed ener	increase want to n energy c d tight tol	nedic consu leran	al app mptior ces	licatio	Mon Mon M3 M3 M3	P) 6 6 6
Task 2: Alterr yoke dimensio Air-cooled wi Task 3: Study Deliverables D1. Small aper D2. Alternative D3. Study low CERN Resour STAFF FELL/PJAS	ative yoke ns and weig indings low curren rture, requine yoke mate current der	materials ght – this v t density f res high pr erials (Fe-C nsity for re	(Fe-Co) to work is rele for reduced recision and Co) educed ener	increase want to n energy c d tight tol	nedic consu leran	al app mptior ces	licatio	ns (TULI Mon M3 M3 M3 3	P) 6 6 6 5
Task 2: Alterry yoke dimension Air-cooled with Task 3: Study Deliverables D1. Small aper D2. Alternative D3. Study low CERN Resour STAFF FELL/PJAS PhD	ative yoke ns and weig indings low curren rture, requine yoke mate current der ces (Manp	materials ght – this w t density f res high pr erials (Fe-C nsity for re ower) [P	(Fe-Co) to work is rele for reduced recision and Co) educed ener	increase want to n energy c d tight tol	nedic consu leran	al app mptior ces	licatio	Mon M3 M3 M3 36	P) 6 6 6 5
Task 2: Alterr yoke dimensio Air-cooled wi Task 3: Study Deliverables D1. Small aper D2. Alternative D3. Study low CERN Resour STAFF FELL/PJAS PhD CERN Resour	ative yoke ns and weig indings low curren rture, requin yoke mate current der ces (Manp	materials ght – this v t density f res high pr erials (Fe-C nsity for re ower) [P	(Fe-Co) to work is rele for reduced recision and Co) educed ener erson.Mor	increase want to n energy c d tight tol rgy consu hths (PM	nedic consu leran umpti 1)]	al app mption ces on	licatio	Mon M3 M3 M3 M3 36 0	P) 6 6 6
Task 2: Alterry yoke dimension Air-cooled with Task 3: Study Deliverables D1. Small aper D2. Alternative D3. Study low CERN Resour STAFF FELL/PJAS PhD CERN Resour Total budget e	ative yoke ns and weig indings low curren rture, requin yoke mate current der ces (Manp	materials ght – this v t density f res high pr erials (Fe-C nsity for re ower) [P	(Fe-Co) to work is rele for reduced recision and Co) educed ener erson.Mor	increase want to n energy c d tight tol rgy consu hths (PM	nedic consu leran umpti	al app mption ces on	licatio	ons (TULI Mon M3 M3 M3 36 0 20	P) 6 6 6 5 0
Task 2: Alterry yoke dimension Air-cooled with Task 3: Study Deliverables D1. Small aper D2. Alternative D3. Study low CERN Resour STAFF FELL/PJAS PhD CERN Resour Total budget e Year1	ative yoke ns and weig indings low curren rture, requin yoke mate current der ces (Manp	materials ght – this v t density f res high pr erials (Fe-C nsity for re ower) [P	(Fe-Co) to work is rele for reduced recision and Co) educed ener erson.Mor	increase want to n energy c d tight tol rgy consu hths (PM	nedic consu leran umpti	al app mption ces on	licatio	Mon M3 M3 M3 36 0 20 50	P) 6 6 6 5 6 0
Task 2: Alterry yoke dimension Air-cooled with Task 3: Study Deliverables D1. Small aper D2. Alternative D3. Study low CERN Resour STAFF FELL/PJAS PhD CERN Resour Total budget e	ative yoke ns and weig indings low curren rture, requin yoke mate current der ces (Manp	materials ght – this v t density f res high pr erials (Fe-C nsity for re ower) [P	(Fe-Co) to work is rele for reduced recision and Co) educed ener erson.Mor	increase want to n energy c d tight tol rgy consu hths (PM	nedic consu leran umpti	al app mption ces on	licatio	ons (TULI Mon M3 M3 M3 36 0 20	P) 1th 6 6 6 7 7 7 7 7 7 7 7

FCC-ST-0001

Page 32 of 58

6.1 IRANSV	ERSE FEED	BACK (TF	B)				
Participant	CERN		1				
Person	40						
months							
Туре	All types						
Objectives	<u> </u>					•	
by resis b. bandwi c. injectio d. feasibili e. use of f LHC) f. transve g. needed h. 100 MH than LH i. TMCI fe 2. FCC-ee: fo a. coupled b. beam p detectio c. signal p d. challen	I bunch feed stive wall ins dth up to 10 n damping E ty of intra-b eedback for a rse blow-up R&D for the Iz for the 5 IC eedback optic cus on techn bunch feed ick-ups for h on processing fo ges: feedbac	back with tability 0 MHz for kicker we unch GHz abort gap to counter technolog ns option on with GH bology usin back with igh freque r short bu	options for fast instabil 5 ns option aveform a c feedback (T and injection ract synchro y for kicker , likely base Iz technolog ng B factory options of d ncies, best f nches, fast	5 ns and ity rise tin to cover a hallenge (MCI), R&I n cleaning otron radia and powe band with cband with ty. experiency ADCs, DA	25 ns b nes) III CBMs ripple), a D in SPS wave tion dan er systen th flatter e ns spac and sche	unch s apertur form a nping [ns frequ ing and eme for	challenge (se □ new ency respons d lower ? r bunch motic
	ЭТ УУОГК						
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS 7 Task 5: Decis Task 6: Detai	and LHCee. ⁻ e machine p from ABP an led bunch fee FMCI feedbac ion on need	arameters nd ABT to edback co ck study co	for study. feedback de nceptual de ompleted su	esign. sign froze Ifficiently f	n. :o conclu	de	
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS Task 5: Decis Task 6: Detai	and LHCee. ⁻ e machine p from ABP an led bunch fee FMCI feedbac ion on need	arameters nd ABT to edback co ck study co	for study. feedback de nceptual de ompleted su	esign. sign froze Ifficiently f	n. :o conclu	de	Month
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma	and LHCee. ⁻ e machine p from ABP an led bunch fee fMCI feedbac ion on need led work.	arameters nd ABT to edback co ck study co and imple neters for	for study. feedback de nceptual de ompleted su mentation de study	esign. sign froze officiently of a TMCI	n. :o conclu	de	M6
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS 7 Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input fron	and LHCee. ⁻ e machine p from ABP and led bunch fee MCI feedbac ion on need led work. achine param n ABP and Al	arameters nd ABT to edback co ck study co and imple neters for BT to feed	s for study. feedback de nceptual de ompleted su mentation o study back design	esign. sign froze Ifficiently of a TMCI	n. :o conclu	de	M6 M12
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input from D3. Coupled b	and LHCee. ⁻ e machine p from ABP and led bunch fee ion on need led work. achine param n ABP and Al- unch feedba	arameters nd ABT to edback co ck study co and imple neters for BT to feed ck concep	for study. feedback de nceptual de ompleted su mentation de study back design tual design	esign. sign froze of a TMCI frozen	n. o conclu eedback	de	M6 M12 M15
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input fron D3. Coupled b D4. SPS TMCI	and LHCee. ⁻ e machine p from ABP an led bunch fee MCI feedbac ion on need led work. achine param n ABP and Al unch feedback st	arameters nd ABT to edback co ck study co and imple <u>neters for</u> <u>BT to feed</u> ck concep udy compl	s for study. feedback de nceptual de ompleted su mentation de study back design tual design eted sufficie	esign. sign frozen of a TMCI frozen ently to co	n. co conclu reedback nclude	de	M6 M12 M15 M18
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS 7 Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input from D3. Coupled b D4. SPS TMCI D5. Decision c	and LHCee. ⁻ e machine p from ABP an led bunch fee MCI feedbac ion on need led work. <u>achine param</u> <u>n ABP and Al</u> <u>unch feedback st</u> on need and	arameters nd ABT to edback co ck study co and imple <u>neters for</u> <u>BT to feed</u> ck concep udy compl	s for study. feedback de nceptual de ompleted su mentation de study back design tual design eted sufficie	esign. sign frozen of a TMCI frozen ently to co	n. co conclu reedback nclude	de	M6 M12 M15 M18 M24
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS T Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input from D3. Coupled b D4. SPS TMCI D5. Decision c D6. Detailed v	and LHCee. ⁻ e machine p from ABP and led bunch fee ion on need led work. <u>achine param</u> <u>n ABP and Al</u> <u>unch feedback ston n need and</u> vork	arameters nd ABT to edback co ck study co and imple neters for BT to feed ck concep udy compl implemen	s for study. feedback de nceptual de ompleted su mentation de study back design tual design eted sufficie tation of a T	esign. sign frozen of a TMCI frozen ently to co MCI feedl	n. To conclu Teedback	de	M6 M12 M15 M18
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS 7 Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input from D3. Coupled b D4. SPS TMCI D5. Decision c D6. Detailed v CERN Resour	and LHCee. ⁻ e machine p from ABP and led bunch fee ion on need led work. <u>achine param</u> <u>n ABP and Al</u> <u>unch feedback ston n need and</u> vork	arameters nd ABT to edback co ck study co and imple neters for BT to feed ck concep udy compl implemen	s for study. feedback de nceptual de ompleted su mentation de study back design tual design eted sufficie tation of a T	esign. sign frozen of a TMCI frozen ently to co MCI feedl	n. To conclu Teedback	de	M6 M12 M15 M18 M24 M36
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS 7 Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input from D3. Coupled b D4. SPS TMCI D5. Decision c D6. Detailed v CERN Resour STAFF	and LHCee. ⁻ e machine p from ABP and led bunch fee ion on need led work. <u>achine param</u> <u>n ABP and Al</u> <u>unch feedback ston n need and</u> vork	arameters nd ABT to edback co ck study co and imple neters for BT to feed ck concep udy compl implemen	s for study. feedback de nceptual de ompleted su mentation de study back design tual design eted sufficie tation of a T	esign. sign frozen of a TMCI frozen ently to co MCI feedl	n. To conclu Teedback	de	M6 M12 M15 M18 M24 M36 6
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS 7 Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input from D3. Coupled b D4. SPS TMCI D5. Decision of D6. Detailed v CERN Resour STAFF FELL/PJAS	and LHCee. ⁻ e machine p from ABP and led bunch fee ion on need led work. <u>achine param</u> <u>n ABP and Al</u> <u>unch feedback ston n need and</u> vork	arameters nd ABT to edback co ck study co and imple neters for BT to feed ck concep udy compl implemen	s for study. feedback de nceptual de ompleted su mentation de study back design tual design eted sufficie tation of a T	esign. sign frozen of a TMCI frozen ently to co MCI feedl	n. To conclu Teedback	de	M6 M12 M15 M18 M24 M36 6 0
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS 7 Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input from D3. Coupled b D4. SPS TMCI D5. Decision c D6. Detailed w CERN Resour STAFF FELL/PJAS PhD	and LHCee. ⁻ e machine p from ABP an led bunch fee MCI feedbac ion on need led work. <u>achine param</u> <u>n ABP and Al</u> <u>unch feedbac</u> <u>feedback st</u> <u>on need and</u> vork rces (Manp	arameters nd ABT to edback co ck study co and imple neters for BT to feed ck concep udy compl implemen	s for study. feedback de nceptual de ompleted su mentation o study back design tual design eted sufficie tation of a T	esign. sign frozen of a TMCI frozen ently to co MCI feedl	n. To conclu Teedback	de	M6 M12 M15 M18 M24 M36 6
Cover LHChh a Task 1: Freez Task 2: Input Task 3: Coup Task 4: SPS 7 Task 5: Decis Task 6: Detai Deliverables D1. Freeze ma D2. Input from D3. Coupled b D4. SPS TMCI D5. Decision of D6. Detailed v CERN Resour STAFF FELL/PJAS	and LHCee. ⁻ e machine p from ABP and led bunch fee ion on need led work. <u>achine param</u> <u>n ABP and Al</u> <u>unch feedback st</u> <u>on need and</u> vork rces (Manp e	arameters nd ABT to edback co ck study co and imple neters for BT to feed ck concep udy compl implement ower) [Po	for study. feedback de nceptual de ompleted su mentation of study back design tual design eted sufficie tation of a 1 erson.Mont	esign. sign frozen of a TMCI f frozen ently to co MCI feed ths (PM)	n. co conclu reedback	de	M6 M12 M15 M18 M24 M36 6 0

FCC-ST-0001

Page 33 of 58

7.1 BEST MA	TERIALS	FOR COLLI	MATORS A	ND DUMP	S?		
Participant	CERN						
Person	30						
months							
Гуре	All types						
Objectives							
Study of energ							
dentification of		e materials					
Description o						s some work	
achoairion are	narios in tri	ie most criti	cal elements	o or a naur	on conder,	in order to se	ec
a range of c characterisatic ce synchronise study group. Task 1: Provie Task 2: Calcu	andidate r on in extren ed with the de a reliable	materials or ne condition activity per e account of	n which to s. The work formed by t	concentr and the r he collima on shower	ate the eff espective re tion team v at the targe	forts in mate esource levels within the FCC et beam energ palette.	eria wil C-hl gy.
a range of c characterisatic be synchronise study group. Task 1: Provid Task 2: Calcu Deliverables	andidate r on in extren ed with the de a reliable late therma	materials or ne condition activity per e account of al load and s	n which to s. The work formed by t the radiations tructural da	concentr and the r he collima on shower mage for	ate the eff espective re tion team v at the targe	forts in mate esource levels within the FCC et beam energinalette. Month	eria wil C-hl gy.
a range of c characterisatic be synchronise study group. Task 1: Provie Task 2: Calcu Deliverables D1. Provide a	andidate r on in extren ed with the de a reliable late therma reliable acc	materials or ne condition activity per e account of al load and s count of the	n which to s. The work formed by t the radiatio structural da radiation sh	concentr and the r he collima on shower mage for ower	ate the eff espective re tion team v at the targe	forts in mate esource levels within the FCC et beam energ palette.	eria wi C-hl gy.
a range of c characterisatio be synchronise study group. Task 1: Provid Task 2: Calcu Deliverables D1. Provide a D2. Calculate	andidate r on in extren ed with the de a reliable late therma reliable acc thermal loa	materials or ne condition activity per e account of al load and s count of the id and struct	n which to s. The work formed by t the radiatio structural da radiation sh tural damag	concentr and the r he collima on shower mage for ower e	ate the eff espective re tion team v at the targe	forts in mate esource levels within the FCC et beam energy palette. Month M12	eria wi C-h gy.
a range of c characterisatio be synchronise study group. Task 1: Provid Task 2: Calcu Deliverables D1. Provide a D2. Calculate CERN Resour	andidate r on in extren ed with the de a reliable late therma reliable acc thermal loa	materials or ne condition activity per e account of al load and s count of the id and struct	n which to s. The work formed by t the radiatio structural da radiation sh tural damag	concentr and the r he collima on shower mage for ower e	ate the eff espective re tion team v at the targe	forts in mate esource levels within the FCC et beam energy palette. Month M12	eria wi C-hl gy.
a range of c characterisatic be synchronise study group. Task 1: Provid Task 2: Calcu Deliverables D1. Provide a D2. Calculate CERN Resour STAFF	andidate r on in extren ed with the de a reliable late therma reliable acc thermal loa	materials or ne condition activity per e account of al load and s count of the id and struct	n which to s. The work formed by t the radiatio structural da radiation sh tural damag	concentr and the r he collima on shower mage for ower e	ate the eff espective re tion team v at the targe	forts in mate esource levels within the FCC et beam energy palette. Month M12 M24	eria wi C-hl gy.
a range of c characterisatic be synchronise study group. Task 1: Provid Task 2: Calcu Deliverables D1. Provide a D2. Calculate CERN Resour STAFF FELL/PJAS	andidate r on in extren ed with the de a reliable late therma reliable acc thermal loa	materials or ne condition activity per e account of al load and s count of the id and struct	n which to s. The work formed by t the radiatio structural da radiation sh tural damag	concentr and the r he collima on shower mage for ower e	ate the eff espective re tion team v at the targe	forts in mate esource levels within the FCC et beam energy palette. Month M12 M24	eria wi C-hl gy.
a range of c characterisatic be synchronise study group. Task 1: Provid Task 2: Calcu Deliverables D1. Provide a D2. Calculate CERN Resour STAFF ELL/PJAS PhD	andidate r on in extren ed with the de a reliable late therma reliable acc thermal loa rces (Man	materials or ne condition activity per e account of al load and s count of the d and struct power) [Pe	n which to s. The work formed by t the radiatio structural da radiation sh tural damag	concentr and the r he collima on shower mage for ower e	ate the eff espective re tion team v at the targe	forts in mate esource levels within the FCC et beam energy palette. Month M12 M24 6 24	eria wi C-hl gy.
a range of c characterisatio be synchronise study group. Task 1: Provid Task 2: Calcu Deliverables D1. Provide a D2. Calculate CERN Resour STAFF FELL/PJAS PhD CERN Resour Fotal budget e	andidate r on in extren ed with the de a reliable late therma reliable acc thermal loa ces (Mate	materials or ne condition activity per e account of al load and s count of the d and struct cower) [Pe	n which to s. The work formed by t the radiation structural da radiation sh tural damag rson.Mont	concentr and the r he collimation on shower mage for ower e hs (PM)]	ate the eff espective re ition team v at the targe a material p	forts in mate esource levels within the FCC et beam energy palette. Month M12 M24 6 24	eria wi C-hl gy.
a range of c characterisatio be synchronise study group. Task 1: Provid Task 2: Calcu Deliverables D1. Provide a D2. Calculate CERN Resour STAFF ELL/PJAS PhD CERN Resour Fotal budget e collaborators	andidate r on in extren ed with the de a reliable late therma reliable acc thermal loa ces (Mate	materials or ne condition activity per e account of al load and s count of the d and struct cower) [Pe	n which to s. The work formed by t the radiation structural da radiation sh tural damag rson.Mont	concentr and the r he collimation on shower mage for ower e hs (PM)]	ate the eff espective re ition team v at the targe a material p	forts in mate esource levels within the FCC et beam energy palette. Month M12 M24 6 24 0	eria wi C-hl gy.
a range of c characterisatic be synchronise study group. Task 1: Provid Task 2: Calcu Deliverables D1. Provide a D2. Calculate CERN Resour STAFF FELL/PJAS PhD CERN Resour Total budget e	andidate r on in extren ed with the de a reliable late therma reliable acc thermal loa ces (Mate	materials or ne condition activity per e account of al load and s count of the d and struct cower) [Pe	n which to s. The work formed by t the radiation structural da radiation sh tural damag rson.Mont	concentr and the r he collimation on shower mage for ower e hs (PM)]	ate the eff espective re ition team v at the targe a material p	forts in mate esource levels within the FCC et beam energy palette. Month M12 M24 6 24 0 50	eria ; wil C-hl gy.
a range of c characterisatic be synchronise study group. Task 1: Provie Task 2: Calcu Deliverables D1. Provide a D2. Calculate CERN Resour STAFF FELL/PJAS PhD CERN Resour Total budget e collaborators <i>Year1</i>	andidate r on in extren ed with the de a reliable late therma reliable acc thermal loa ces (Mate	materials or ne condition activity per e account of al load and s count of the d and struct cower) [Pe	n which to s. The work formed by t the radiation structural da radiation sh tural damag rson.Mont	concentr and the r he collimation on shower mage for ower e hs (PM)]	ate the eff espective re ition team v at the targe a material p	forts in mate esource levels within the FCC et beam energy palette. Month M12 M24 6 24 0 50 25	eria s wil C-hł gy.

Page 34 of 58

1.7 REAM IN	IDUCED DA	AMAGE ANI	D HYDROD	ΥΝΑΜΙΟ ΤΙ	JNNELLING	i		
Participant	CERN							
Person	42							
months								
Туре	All types							
Objectives								
Study of the li	mits							
Description	of Work							
New materials	have to be	studied and	d characteri	sed for the	stress/radia	tion levels to		
						luding dynamic		
stress measur								
studies in HiRa						iccus, impact		
	aumat, post		anarysis.					
Tack 1. Ident	if , northorn	for motoria	l charactori	cation for u	ida rangag	oftomporatura		
						of temperature,		
strain rates, ir		veis and vac	cuum. Estat	plish protoc	ois for tests	or innovative		
	-	materials (e.g. Si).						
	randidato m					1/1 1 1 1 1		
						el/test-bench to		
	d HiRadMat	tests. Selec	t and chara	cterise spec	ific instrume	entation for		
	d HiRadMat	tests. Selec	t and chara	cterise spec		entation for sts.		
Deliverables	d HiRadMat	tests. Selec ment/vibrat	t and chara ion measur	cterise spec ements in F	ific instrume	entation for sts. Month		
Deliverables D1. Identify p	d HiRadMat and displace artners for r	tests. Selec ment/vibrat material cha	t and chara- ion measur iracterisatio	cterise spec ements in F	ific instrume	Month Month M12		
Deliverables D1. Identify p D2. Test cand	d HiRadMat and displace artners for r idate mater	tests. Selec ment/vibrat material cha ials in HiRac	t and chara ion measur racterisatio IMat	cterise spec ements in F n	ific instrume	entation for sts. Month		
Deliverables D1. Identify p D2. Test cand CERN Resour	d HiRadMat and displace artners for r idate mater	tests. Selec ment/vibrat material cha ials in HiRac	t and chara ion measur racterisatio IMat	cterise spec ements in F n	ific instrume	Month Month M12 M36		
Deliverables D1. Identify p D2. Test cand CERN Resour	d HiRadMat and displace artners for r idate mater	tests. Selec ment/vibrat material cha ials in HiRac	t and chara ion measur racterisatio IMat	cterise spec ements in F n	ific instrume	Month M12 M36 8		
Deliverables D1. Identify p D2. Test cand CERN Resource	d HiRadMat and displace artners for r idate mater	tests. Selec ment/vibrat material cha ials in HiRac	t and chara ion measur racterisatio IMat	cterise spec ements in F n	ific instrume	Month Month M12 M36		
Deliverables D1. Identify p D2. Test cand CERN Resour STAFF	d HiRadMat and displace artners for r idate mater	tests. Selec ment/vibrat material cha ials in HiRac	t and chara ion measur racterisatio IMat	cterise spec ements in F n	ific instrume	Month M12 M36 8		
Deliverables D1. Identify p D2. Test cand CERN Resour STAFF FELL/PJAS	d HiRadMat and displace artners for r idate materi r ces (Manp	tests. Selec ment/vibrat material cha ials in HiRac ower) [Pe	t and chara ion measur iracterisatio iMat rson.Mont	cterise spec ements in F n	ific instrume	Month M12 M36 8 0		
Deliverables D1. Identify p D2. Test cand CERN Resour STAFF FELL/PJAS PhD	d HiRadMat and displace artners for r idate materi r ces (Manp	tests. Selec ment/vibrat material cha ials in HiRac ower) [Pe	t and chara ion measur iracterisatio iMat rson.Mont	cterise spec ements in F n	ific instrume	Month M12 M36 8 0		
Deliverables D1. Identify p D2. Test cand CERN Resour STAFF FELL/PJAS PhD CERN Resour	d HiRadMat and displace artners for r idate materi r ces (Manp	tests. Selec ment/vibrat material cha ials in HiRac ower) [Pe	t and chara ion measur iracterisatio iMat rson.Mont	cterise spec ements in F n	ific instrume	Month M12 M36 8 0 36		
Deliverables D1. Identify p D2. Test cand CERN Resour STAFF FELL/PJAS PhD CERN Resour Total budget e	d HiRadMat and displace artners for r idate materi r ces (Manp	tests. Selec ment/vibrat material cha ials in HiRac ower) [Pe	t and chara ion measur iracterisatio iMat rson.Mont	cterise spec ements in F n	ific instrume	Month M12 M36 8 0 36 400		

FCC-ST-0001

Page 35 of 58

Deuticinent						
Participant Person	CERN 69					
months	69					
Type Objectives	All types	l			<u> </u>	
	a compatib	ility of the	LHC integrat	tion with ror	note bandli	ng and propos
	•	•	-			ase this remote
handling.			ii asti uttui e	intenace w		
	ont of radia	ation tolera	ant nosition	ina system	s including	actuation and
•			eter accuracy		-	
	-			•	•	e and repair o
collimators		ier activat		is from t		
telemanipu						
Description of						
		e hierarchy	of different	collimators	depend on a	micrometer or
		,	ollimator to d			
	-					tions based on
		• •				ncrease with
						switches etc)
			to higher int			
			ore justified l			
		•				
conducted	in WP 7.1.	Radiation te	ests of the p	resently use	ed equipmen	nt and eventua
					d equipmer	nt and eventua
market sur	vey of new	resins and	fillers are er	nvisaged.		
market sur • Investigati	vey of new on on opera	resins and tional aspe	fillers are er cts: how oft	nvisaged. en will we h	ave to chan	ge the
market sur • Investigati collimators	vey of new on on opera ? Radiation	resins and tional aspe issues? Cai	fillers are er cts: how oft n we develop	nvisaged. en will we h p "remotely	ave to chan disposable"	ge the
market sur Investigati collimators collimators	vey of new on on opera ? Radiation (quick and	resins and tional aspe issues? Car fully autom	fillers are er cts: how oft n we develop nated collima	nvisaged. en will we h p "remotely ator replace	ave to chan disposable" ment). Wha	ge the , t could be the
market sur Investigati collimators collimators optimal tel	vey of new on on opera ? Radiation (quick and emanipulate	resins and tional aspe issues? Car fully autom or and how	fillers are er cts: how oft n we develop nated collima to transport	nvisaged. en will we h p "remotely ator replace i it to the far	ave to chan disposable" ment). Wha ulty equipm	ige the , t could be the ent in a
 market sur Investigati collimators collimators optimal tel reasonable 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g.	resins and tional aspe issues? Car fully autom or and how	fillers are er cts: how oft n we develop nated collima	nvisaged. en will we h p "remotely ator replace i it to the far	ave to chan disposable" ment). Wha ulty equipm	ige the t could be the ent in a
market sur Investigati collimators collimators optimal tel reasonable (wired or v	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless).	resins and tional aspe issues? Car fully autom or and how less than 3	fillers are er cts: how oft n we develop nated collima to transport hours). How	nvisaged. en will we h p "remotely ator replace t it to the fai v to connect	ave to chan disposable" ment). Wha ulty equipm from the co	ige the t could be the ent in a ontrol room
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per	nvisaged. en will we h p "remotely ator replace i it to the fai v to connect form an inte	ave to chan disposable" ment). Wha ulty equipm from the co	ige the t could be the ent in a
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica	fillers are er cts: how oft n we develop nated collima to transport hours). How	nvisaged. en will we h p "remotely ator replace i it to the fai v to connect form an inte	ave to chan disposable" ment). Wha ulty equipm from the co	ige the t could be the ent in a ontrol room
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per	nvisaged. en will we h p "remotely ator replace i it to the fai v to connect form an inte	ave to chan disposable" ment). Wha ulty equipm from the co	ige the t could be the ent in a ontrol room
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space ir	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel	nvisaged. en will we h p "remotely ator replace i it to the fai v to connect form an into	ave to chan disposable" ment). Wha ulty equipm from the co egration stu	ige the t could be the ent in a ontrol room
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel	nvisaged. en will we h p "remotely ator replace it to the fai v to connect form an inte ncept, inclue	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding:	ige the it could be the ent in a ontrol room idy to reserve
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve E 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in Determinatio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote on of the op	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per trator tunnel handling co	nvisaged. en will we h p "remotely ator replace it to the fai to connect form an inte form an inte ncept, inclue sion and all	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl	ige the it could be the ent in a ontrol room idy to reserve
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve E 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in Determinatio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote on of the op t communic	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling con timal dimen cation carrie	nvisaged. en will we h p "remotely ator replace it to the fai to connect form an inte form an inte ncept, inclue sion and all	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl	ige the it could be the ent in a ontrol room idy to reserve
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve E S Materia 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in lopment of teterminatio Study of bes I resources:	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote on of the op t communic 150 kCHF.	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling con timal dimen cation carrie	nvisaged. en will we h p "remotely ator replace it to the fai v to connect form an inte form an inte ncept, inclue sion and alle r (wired/wir	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless).	ige the it could be the ent in a ontrol room idy to reserve
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve E Materia Task 2: Integ 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in Opment of ary space in Coterminatio Study of bes I resources: ration study	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote on of the op t communio 150 kCHF. y for the rer	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling con timal dimen cation carrie	nvisaged. en will we h p "remotely ator replace it to the fai to connect form an intent form an intent ncept, inclue sion and alle r (wired/wir	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless). tion	ige the it could be the ent in a ontrol room idy to reserve oad.
 market sur Investigati collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve S Materia Task 2: Integ 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in Opment of ary space in Coterminatio Study of bes I resources: ration study	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the remote on of the op t communic 150 kCHF. y for the rer e remote ha	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling con timal dimen cation carrie	nvisaged. en will we h p "remotely ator replace it to the fai to connect form an intent form an intent ncept, inclue sion and alle r (wired/wir	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless). tion	ige the it could be the ent in a ontrol room idy to reserve oad.
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve E Materia Task 2: Integ I t 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in lopment of eterminatio fudy of bes l resources: ration study ntegrate the o reserve sp Determinatio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote on of the op t communic 150 kCHF. y for the remote ha bace. on of allowa	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling con timal dimen cation carrie mote handlir andling/telen	nvisaged. en will we h p "remotely ator replaces it to the fai v to connect form an inter- form an inter- ncept, inclue sion and alle r (wired/wir ng/manipula nanipulators	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless). tion in the tunn a failure.	ige the it could be the ent in a ontrol room idy to reserve oad.
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve E Materia Task 2: Integ I t 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in lopment of eterminatio fudy of bes l resources: ration study ntegrate the o reserve sp Determinatio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote on of the op t communic 150 kCHF. y for the remote ha bace. on of allowa	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling con timal dimen cation carrie mote handlir andling/telen	nvisaged. en will we h p "remotely ator replaces it to the fai v to connect form an inter- form an inter- ncept, inclue sion and alle r (wired/wir ng/manipula nanipulators	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless). tion in the tunn a failure.	ige the it could be the ent in a ontrol room idy to reserve
 market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve E Materia Task 2: Integ I I E 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space ir lopment of to eterminatio tudy of bes l resources: ration study ntegrate the o reserve sp Determinatio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the remote on of the op t communic 150 kCHF. for the rer e remote ha bace. on of allowa	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling con timal dimen cation carrie mote handlir andling/telen	nvisaged. en will we h p "remotely ator replace it to the fai v to connect form an inte form an inte ncept, inclue sion and alle r (wired/wir ng/manipula nanipulators mber of te	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless). tion in the tunn a failure. elemanipulat	ige the it could be the ent in a ontrol room idy to reserve oad. el cross section tors based of
 market sur Investigati collimators collimators optimal tel reasonable (wired or w Establish b the necess Task 1: Deve E Materia Task 2: Integ I I E 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in Operminatio Study of bes I resources: ration study ntegrate the o reserve sp Determinatio Determinatio Determinatio Study of bes	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote n of the accele the remote 150 kCHF. for the remote pace. on of allowa on of the wntime. Dis t communic	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling col otimal dimen cation carrie mote handlir ndling/telen optimal nu	nvisaged. en will we h p "remotely ator replace it to the fai v to connect form an inte- form an inte- form an inte- ncept, inclue sion and alle r (wired/wir ng/manipula nanipulators mber of te position alle	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless). tion in the tunn a failure. elemanipulat	ige the it could be the ent in a ontrol room idy to reserve oad. el cross section tors based of
market sur Investigati collimators collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve • E Materia Task 2: Integ • I t • C	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space ir lopment of ary space ir lopment of study of bes l resources: ration study ntegrate the o reserve sp Determinatio Determinatio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote n of the accele to of the op t communic 150 kCHF. y for the rer e remote ha bace. on of allowa on of the wntime. Dis t communic	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling col timal dimen cation carrie mote handlir andling/telen ble downtim optimal nu scuss garage	nvisaged. en will we h p "remotely ator replace it to the fai v to connect form an inte- form an inte- form an inte- ncept, inclue sion and alle r (wired/wir ng/manipula nanipulators mber of te position alle	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless). tion in the tunn a failure. elemanipulat	ige the it could be the ent in a ontrol room idy to reserve oad. el cross sectio tors based o
 market sur Investigati collimators optimal tel reasonable (wired or v Establish b the necess Task 1: Deve E Materia Task 2: Integ I t E Materia 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in lopment of to teterminatio tudy of bes ration study ntegrate the o reserve sp Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote on of the op t communic 150 kCHF. of for the rer e remote ha bace. on of allowa on of the wntime. Dis t communic 60 kCHF.	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling con timal dimen cation carrie mote handlir ndling/telen optimal nu scuss garage cation carrie	nvisaged. en will we h p "remotely ator replace it to the fai v to connect form an inte form an inte form an inte ncept, inclue sion and alle r (wired/wir ng/manipulators ne following mber of te position alle r (wired/wir	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless). tion a failure. elemanipulat ong the tunn eless).	ige the it could be the ent in a ontrol room idy to reserve oad. eel cross section tors based of nel
 market sur Investigati collimators collimators optimal tel reasonable (wired or w Establish b the necess Task 1: Deve E Materia Task 2: Integ I E 	vey of new on on opera ? Radiation (quick and emanipulato time (e.g. vireless). asic functio ary space in lopment of total of bes l resources: ration study ntegrate the o reserve sp Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio Determinatio	resins and tional aspe issues? Car fully autom or and how less than 3 nal specifica the accele the remote on of the op t communic 150 kCHF. of for the rer e remote ha bace. on of allowa on of the wntime. Dis t communic 60 kCHF. f present ed	fillers are er cts: how oft n we develop nated collima to transport hours). How ations to per rator tunnel handling con timal dimen cation carrie mote handlir ndling/telen optimal nu scuss garage cation carrie	nvisaged. en will we h p "remotely ator replace it to the fai v to connect form an inte form an inte form an inte ncept, inclue sion and alle r (wired/wir ng/manipulators ne following mber of te position alle r (wired/wir	ave to chan disposable" ment). Wha ulty equipme from the co egration stu ding: owable payl eless). tion a failure. elemanipulat ong the tunn eless).	ige the it could be the ent in a ontrol room idy to reserve oad. eel cross section tors based of nel

Page 36 of 58

- Optical position sensors
- Piezo actuators

Material resources for radiation tests: 400 kCHF.

Task 4: Development of the concept for an easily disposable collimator. Based on the present design, improve all aspects of remote maintenance (replacement of faulty motors/sensors, connection/disconnection of vacuum flanges, remote bake-out).

Material resources for prototyping: 300 kCHF.

Task 5: Study of disposal options, optimisation of radioactive wastes from collimators. Material resources for prototyping: 50 kCHF.

Deliverables	Month
D1. Development of the remote handling concept	M12
D2. Integration study for the remote handling/manipulation	M36
D3. Irradiation test of present equipment	M36
D4. Development of the concept for an easily disposable collimator	M24
D5. Study of disposal options	M24
CERN Resources (Manpower) [Person.Months (PM)]	
STAFF	9
FELL/PJAS	60
PhD	0
CERN Resources (Material) [kCHF]	
Total budget estimate for test bench, PCBs, components and FSU	960
Task 1	150
Task 2	60
Task 3	400
Task 4	300
Task 5	50

FCC-ST-0001

Page 37 of 58

8 BEAM INSTRUMENTATION

8 1 BEAM LO		ORS (BLM) FO	R FCC-HH	4		
Participant	Univ. Liverpool?	Australian Synchrotron?	SR Taiwan?	SPRING8?		
Person months						
Туре	All types					
Objectives						
providing max	<u>kimal machir</u>	or a large distri				tem,
Description	of Work					
the overall be investigated in Task 1: Revie development Task 2: Set-u	am loss cove n order to op ew of presen up of an expe	icant increase in erage. Alternati otimise the num t technologies: erimental progr v being studied	ve technolo aber of char performano am to inves	ogies are the nnels and ov ce, limitatior stigate the fe	refore to erall cove as and po easibility	be erage. tential for
Deliverables						Month
D1: Report or						12
		ental program				24
		rimental progra				
				<pre>/ > -</pre>		36
CERN Resou	<u> </u>			(PM)]		
All manpower	to come fro	m collaboration		(PM)]		36 0
	to come fro	m collaboration		(PM)]		

Page 38 of 58

Deuticius		REMENT FOR F		CDDINC	Diarrage	
Participa	Australian	Univ.	SR Taiwan2	SPRING	Diamon	SPEAR
nt	Synchrotron	Liverpool?	Taiwan?	8?	d Light	
Person	ſ				Source	
months						
Туре	All types					
Objectives	<u> </u>					
1. Show th	ne feasibility	of using sync	hrotron rac	liation for	absolute	beam size
measure	ment in FCC-h	nh.				
Description	າ of Work					
Non-invasiv	e beam size m	neasurement for	the calculat	ion of emit	tance is es	sential for
any high en	ergy collider. /	Already difficult f	for the curre	ent LHC, th	is will be o	ne of the
main beam	instrumentatio	on challenges for	FCC-hh. Th	ne only vial	ble candida	tes to date
are:						
- Gas b	ased detector	S				
0	Ionisation pr	ofile monitors				
0	Beam-gas ve	ertexing				
0	-	s sheet monitors	5			
- Svnch	nrotron light d					
		tion systems are	already un	der study v	within the f	ramework
		require gas inje				
		ight detection, for				
		imited. For the F				
					.,	-
Task 1: Cal	culation of the	e best wavelengt	hs to use fo	r beam siz	e measurei	ment usina
		ughout the FCC				
		n of an extractio				these
wavelength			in system a	ia inaging	operes for	litese
Wavelengen						
Deliverable	es					Month
	on best wavele	ength				12
D1: Result of						
D1: Result of D2: Concept	tual design					36
D2: Concept		ower) [Person	.Months (P	PM)]		36
D2: Concept CERN Reso	ources (Manp	ower) [Person m collaboration	.Months (P	M)]		36 0
D2: Concept CERN Reso All manpower	ources (Manp	m collaboration	.Months (P	(M)]		
D2: Concept CERN Reso All manpower	er to come fro	m collaboration	.Months (P	PM)]		

FCC-ST-0001

Page 39 of 58

Participant	CERN	,	THERS)			
Person	6					
months	Ŭ					
Туре	All types					
Objectives	-/					
	sibility study	/ for all bea	m diagnosti	c instrumen	ts required	for the FCC-hh
and FCC-ee op			2		•	
Description of	of Work					
 Beam in Polaring Longitud Luminos Tune m Chroma 	n instrumen rbit measur ntensity mor eters for FC dinal profile sity monitor easurement ticity measu	tation: ement systen hitors (BCT) C-ee measurem s for FCC-h for FCC-hh urement for	em (BPM) fo) for FCC-hh ent for FCC- h and FCC-e and FCC-e FCC-hh	or FCC-hh a and FCC-e hh and FCC ee e	nd FCC-ee e C-ee	
Task 1: Produ	ice a feasibi	lity study fo	s for both n		nstruments	-
the FCC-hh an	ice a feasibi	lity study fo	s for both n		nstruments	required for
Task 1: Produte the FCC-hh an Deliverables	ice a feasibi id FCC-ee o	lity study fo	s for both n		nstruments	-
Task 1: Produ the FCC-hh an Deliverables D1: Publication	ice a feasibi id FCC-ee of n of feasibili	lity study fo ptions. ty study	s for both m	diagnostic ir	nstruments	required for Month
Task 1: Produ the FCC-hh an Deliverables D1: Publication CERN Resour	ice a feasibi id FCC-ee of n of feasibili	lity study fo ptions. ty study	s for both m	diagnostic ir	nstruments	required for Month
Task 1: Produ the FCC-hh an Deliverables D1: Publication CERN Resour Staff	ice a feasibi id FCC-ee of n of feasibili	lity study fo ptions. ty study	s for both m	diagnostic ir	nstruments	required for Month M24 6 0
Task 1: Produ the FCC-hh an Deliverables D1: Publication CERN Resour Staff FELL/PJAS PhD	n of feasibili rces (Manp	lity study fo ptions. ity study ower) [Pe	s for both m or all beam o	diagnostic ir	nstruments	required for Month M24 6
achieving the Task 1: Produ the FCC-hh an Deliverables D1: Publication CERN Resour Staff FELL/PJAS PhD CERN Resour No request	n of feasibili rces (Manp	lity study fo ptions. ity study ower) [Pe	s for both m or all beam o	diagnostic ir	nstruments	required for Month M24 6 0

FCC-ST-0001

Page 40 of 58

9 BEAM VACUUM

Participa	-	ACUUM CH CERN	LNF	BESSY2?					
Person		20	60-150?	10?					
nonths		20	00 150.	10.					
Гуре		All types	All types	SR?					
Dbjectives	s		/1		I	-			
. Find out	the l	best mater	ials and sur	face coating	js for the F	CC-hh a	rcs b	eam pipe	
(and/or)) beai	m screen ir	n terms of p	erformance	, feasibility	, and co	osts.		
				tions (Seco					
	-			aterial coat	-				
			•	materials v	with all vac	cuum iss	ues, i	impedance	е
		evant aspe	cts.						
Contribute		dination of	ample decid		tion Voo	um toot			
CERN		raination, s acterizatio		gn, construe	Luon, vacu	un test	s and		
LNF				oscopy on s	small prote	types S		nerimento	(at
	-		•	eriments (at	•	, , pc3, c		permento	ູ່ແ
BESSY2?				an official a		to mea	sure	with SR. F	ξ
			lifferent pro		5			,	
Descriptio	on of	Work							
Electron – will be anal surface cor work may b	photo lyzed nditio benef	on –(eventu as a funct ns, temper it from the	ually ion) in ion of mate ature, surfa use of LNF	teraction wi rial coatings ice contami facilities fo	s macro- a nants, ads r surface s	erent cai s well as orbates, pectrosc	ndida micr etc. opy,	tes mater oscopic Part of th XPS, UPS	ial is
Electron – p will be anal surface cor work may b SEY and Lo Raman ana project). Part of the Synchrotro PY. One of at BESSY2, source deve Electron clo partners' p	photo lyzed nditio benef ow en alysis, e fore on Rac the v , Berl elope oud n revio	on – (eventu as a functi ns, temper fit from the ergy SEY a , variable T seen tasks diation bea very few ex in. The exp ed at Bessy nitigation n us experier	ually ion) in ion of mater ature, surfa use of LNF it variable to emperature implies the mline and e isting facilit perience wit and LNF win nethods will nce will be o	teraction wi rial coatings ice contami	ith the diffe s macro- a nants, ads r surface s , diff erent STM (to be hoc" deve l station to to this tas on radiatio ated in this dressed by and utilized	erent can s well as orbates, pectroso growing integrat oped sta omeasur k is the n facility s study (this wor t to this	ndida micr etc. opy, tech ed to ate 'o re Rei "Opti and if res rk pa	screen). tes mater oscopic Part of th XPS, UPS iniques, M serve the f the art' flectivity a cal beaml laborator ource allo ckage and	ial is licro and ine' y ws)

Page 41 of 58

Deliverables	Month
D1: Detailed proposal	M3
D2: formalize economic aspects of proposal	M6
D3: Define access to Synchrotron Radiation at BESSY 2	M24
D4: Production and mechanical analysis of test samples	M36
D5: experimental work on test samples	M42
D6: Document results	M48
CERN Resources (Manpower) [Person.Months (PM)]	
STAFF	6
FELL/PJAS (MC simulations)	0
PhD (Technical student is requested) (shared with HL-LHC activities)	12
CERN Resources (Material) [kCHF]	
Prototypes & Material for Labs	250

Page 42 of 58

Participant	CERN	KEK?					
Person	68						
nonths	_						
уре	All types						
Objectives							
ind out the b	est vacuum	system for	the FCC-ee	arcs and e	experime	ntal reg	jions in
erms of perfo	rmance, fea	asibility, an	d costs.				
Description of	of Work						
distributed and experience col ntegrated in t Electron cloud again, the pre calculation of 1	lected with his study, r mitigation vious exper	synchrotro notably the methods w	n radiation f super-KEKB ill be also ac e considered	acility and and the Pl Idressed by d. The stud	B factori noton Fac y this wor y will be	es will l ctory ac rk pack conclue	be ccelerators. age. Here ded with th
Task 1: At least scale up of the considers the Task 2: The cTask 3: A pro	E LEP, the s extensive a osts of the totype dipo	econd take opplication o proposed te	tudies will be into accoun f NEG coatir echnical solu	e presente t localised ng. Itions will t	absorber oe evalua	s, and t ted.	sts on a the third
Task 1: At lea scale up of the considers the Task 2: The c Task 3: A pro light of the Ph	E LEP, the s extensive a osts of the totype dipo	econd take opplication o proposed te	tudies will be into accoun f NEG coatir echnical solu	e presente t localised ng. Itions will t	absorber oe evalua	s, and t ted.	sts on a the third ynchrotron
Task 1: At leascale up of the considers the Task 2: The considers the Task 3: A proight of the Ph	e LEP, the s extensive a osts of the totype dipo oton Factor	econd take opplication o proposed te	tudies will be into accoun f NEG coatir echnical solu	e presente t localised ng. Itions will t	absorber oe evalua	s, and t ted.	sts on a the third
Task 1: At leastscale up of thescale up of theconsiders theTask 2: The cTask 3: A proight of the PhDeliverablesD1-1: Scale-u	E LEP, the s extensive a osts of the totype dipo oton Factor p from LEP	econd take pplication o proposed te le beampipe y at KEK.	tudies will be into accoun f NEG coatir echnical solu e will be pro	e presente t localised ng. Itions will t	absorber oe evalua	s, and t ted.	sts on a the third ynchrotron Month
Task 1: At least scale up of the considers the Task 2: The c Task 3: A pro ight of the Ph Deliverables D1-1: Scale-u D1-2: Option	E LEP, the s extensive a osts of the totype dipo oton Factor p from LEP with localise	econd take pplication o proposed te le beampipe y at KEK.	tudies will be into accoun f NEG coatir echnical solu e will be pro	e presente t localised ng. utions will b duced and	absorber oe evalua	s, and t ted.	sts on a the third ynchrotron <u>Month</u> 12
Task 1: At leasescale up of thescale up of theconsiders theTask 2: The cTask 3: A proight of the PhDeliverablesD1-1: Scale-uD1-2: OptionD1-3: Option	e LEP, the s extensive a osts of the totype dipo oton Factor <u>p from LEP</u> with localise with extens	econd take opplication o proposed te le beampipe y at KEK. ed absorber sive use of N	tudies will be into accoun f NEG coatir echnical solu e will be pro	e presente t localised ng. utions will b duced and	absorber oe evalua	s, and t ted.	sts on a the third ynchrotron <u>Month</u> 12 18
Task 1: At least scale up of the considers the Task 2: The considers the Task 3: A problem bight of the Ph Deliverables D1-1: Scale-u D1-2: Option 100 D1-3: Option 100 D2: Cost evalue	E LEP, the s extensive a osts of the totype dipo oton Factor p from LEP with localise with extens uation of 3	econd take pplication o proposed te le beampipe y at KEK. ed absorber sive use of N options	tudies will be into accoun f NEG coatir echnical solu e will be pro	e presente t localised ng. utions will b duced and	absorber oe evalua	s, and t ted.	sts on a the third ynchrotron <u>Month</u> 12 18 24
Task 1: At leases scale up of the considers the Task 2: The considers the Task 3: A pro- light of the Ph Deliverables D1-1: Scale-u D1-2: Option D1-3: Option D2: Cost evalue D3-1: Prototy	e LEP, the s extensive a osts of the totype dipo oton Factor p from LEP with localise with extens uation of 3 pe of dipole	econd take opplication of proposed te le beampipe y at KEK. ad absorber ive use of N options	tudies will be into accoun f NEG coatir echnical solu e will be pro	e presente t localised ng. utions will b duced and	absorber oe evalua	s, and t ted.	sts on a the third /nchrotron <u>Month</u> 12 18 24 30
Task 1: At leasescale up of thescale up of theconsiders theTask 2: The cTask 3: A prolight of the PhDeliverablesD1-1: Scale-uD1-2: OptionD1-3: OptionD2: Cost evaluD3-1: PrototyD3-2: Prototy	e LEP, the s extensive a osts of the totype dipo oton Factor p from LEP with localise with extens uation of 3 oe of dipole pe of dipole	econd take pplication o proposed te le beampipe y at KEK. ed absorber sive use of N options	tudies will be into accound f NEG coating echnical solute will be pro	e presente t localised ng. utions will t duced and	absorber oe evalua	s, and t ted.	sts on a the third ynchrotron <u>Month</u> 12 18 24 30 30 30
Task 1: At leasescale up of thescale up of theconsiders theTask 2: The cTask 3: A prolight of the PhDeliverablesD1-1: Scale-uD1-2: Option vD1-3: Option vD2: Cost evaluD3-1: PrototyD3-2: PrototyCERN Resourt	e LEP, the s extensive a osts of the totype dipo oton Factor p from LEP with localise with extens uation of 3 oe of dipole pe of dipole	econd take pplication o proposed te le beampipe y at KEK. ed absorber sive use of N options	tudies will be into accound f NEG coating echnical solute will be pro	e presente t localised ng. utions will t duced and	absorber oe evalua	s, and t ted.	sts on a the third ynchrotron <u>Month</u> 12 18 24 30 30 30
Task 1: At leases scale up of the considers the Task 2: The c Task 3: A pro- light of the Ph Deliverables D1-1: Scale-u D1-2: Option D1-3: Option D2: Cost evalu D3-1: Prototy D3-2: Prototy CERN Resour	e LEP, the s extensive a osts of the totype dipo oton Factor p from LEP with localise with extens uation of 3 of pe of dipole ces (Mang	econd take application of proposed te ble beampipe y at KEK. ed absorber ive use of N options tested und power) [Pe	tudies will be into accound f NEG coating echnical solute will be pro	e presente t localised ng. utions will t duced and	absorber oe evalua	s, and t ted.	sts on a the third /nchrotron Month 12 18 24 30 30 30 36
Task 1: At leases scale up of the considers the Task 2: The considers the Task 3: A pro- light of the Ph D1-1: Scale-u D1-2: Option D1-3: Option D1-3: Option D1-3: Option D1-3: Prototy D3-1: Prototy D3-2: Prototy CERN Resour STAFF FELL/PJAS (Mo	e LEP, the s extensive a osts of the totype dipo oton Factor p from LEP with localise with extens uation of 3 pe of dipole ces (Manp C simulation	econd take application of proposed te ble beampipe by at KEK. ed absorber sive use of N options tested und power) [Pe	tudies will be into accound f NEG coating echnical solute will be pro	e presente t localised ng. utions will t duced and	absorber oe evalua	s, and t ted.	sts on a the third ynchrotron <u>Month</u> 12 18 24 30 30 30 36 8
Task 1: At leases scale up of the considers the Task 2: The considers the Task 3: A pro- light of the Ph Deliverables D1-1: Scale-u D1-2: Option of D1-3: Option of D1-3: Option of D1-3: Option of D1-3: Prototy D3-1: Prototy D3-2: Prototy CERN Resour STAFF FELL/PJAS (More PhD (Technical	e LEP, the s extensive a osts of the totype dipo oton Factor p from LEP with localise with extens uation of 3 ope of dipole ces (Mang C simulatior I student is	econd take application of proposed te ble beampipe by at KEK. ed absorber ive use of N options tested und power) [Pe ns) requested)	tudies will be into accound f NEG coating echnical solute will be pro	e presente t localised ng. utions will t duced and	absorber oe evalua	s, and t ted.	sts on a the third /nchrotron 12 18 24 30 30 30 36 8 36
Task 1: At lea scale up of the considers the Task 2: The c Task 3: A pro	e LEP, the s extensive a osts of the totype dipo oton Factor p from LEP with localise with extens uation of 3 oe of dipole oe of dipole ces (Mang C simulatior I student is ces (Mate	econd take application of proposed te ble beampipe by at KEK. ed absorber ive use of N options tested und power) [Pe ns) requested)	tudies will be into accound f NEG coating echnical solute will be pro	e presente t localised ng. utions will t duced and	absorber oe evalua	s, and t ted.	sts on a the third /nchrotron 12 18 24 30 30 30 36 8 36

Page 43 of 58

 K. At such temperatures the resistivity of copper, the metal facing the bear unduly contribute to the global impedance. A possible solution would be to beam screen with HTC thin films and benefit of the very low electrical resis. Though simple, this proposal is a technological challenge both in term of fe mplementation. This work package aims at investigating if HTS films can b ong and confined structure like the beam screen. Pulsed laser deposition wirst technique to be considered. In parallel, the physical and chemical properties special layer would be analysed. For example SEY, electron and photor desorption, together with resistance to radiation would be measured. Task 1: Find out the best deposition technique in cylindrical geometry. Task 2: Measure electronic properties of the films (Tc, SEY at RT and 40 K at the FCC-hh dipolar magnetic field and at the beam E-M frequency). Task 3: Evaluate the vacuum properties of the film: outgassing and degase nduced by particle impingement. Task 4: Evaluate the radiation damage of the film, in particular on its super properties. 	ince of FCC-
Person 44 Imports All types Dijectives Import and the second	ance of FCC-
Type All types Objectives Feasibility study of HTS coatings for the reduction of the beampipe impedation Description of Work In the FCC-hh the most probable range of temperature for the beam screen K. At such temperatures the resistivity of copper, the metal facing the bear induly contribute to the global impedance. A possible solution would be to beam screen with HTC thin films and benefit of the very low electrical resis Though simple, this proposal is a technological challenge both in term of fe mplementation. This work package aims at investigating if HTS films can b ong and confined structure like the beam screen. Pulsed laser deposition w irst technique to be considered. In parallel, the physical and chemical prop his special layer would be analysed. For example SEY, electron and photor desorption, together with resistance to radiation would be measured. Task 1: Find out the best deposition technique in cylindrical geometry. Task 3: Evaluate the vacuum properties of the films (Tc, SEY at RT and 40 K at the FCC-hh dipolar magnetic field and at the beam E-M frequency). Task 4: Evaluate the radiation damage of the film, in particular on its supe properties.	ance of FCC-
 Dbjectives Feasibility study of HTS coatings for the reduction of the beampipe impedation Description of Work At such temperatures the resistivity of copper, the metal facing the bear unduly contribute to the global impedance. A possible solution would be to be an screen with HTC thin films and benefit of the very low electrical resistivation of generation. This work package aims at investigating if HTS films can be ong and confined structure like the beam screen. Pulsed laser deposition would be analysed. For example SEY, electron and photor desorption, together with resistance to radiation would be measured. Task 1: Find out the best deposition technique in cylindrical geometry. Task 3: Evaluate the vacuum properties of the films (Tc, SEY at RT and 40 K at the FCC-hh dipolar magnetic field and at the beam E-M frequency). Task 4: Evaluate the radiation damage of the film, in particular on its super properties. 	ance of FCC
 Feasibility study of HTS coatings for the reduction of the beampipe impedant Description of Work In the FCC-hh the most probable range of temperature for the beam screen K. At such temperatures the resistivity of copper, the metal facing the bear induly contribute to the global impedance. A possible solution would be to beam screen with HTC thin films and benefit of the very low electrical resis Though simple, this proposal is a technological challenge both in term of fe mplementation. This work package aims at investigating if HTS films can b ong and confined structure like the beam screen. Pulsed laser deposition wirst technique to be considered. In parallel, the physical and chemical prophis special layer would be analysed. For example SEY, electron and photor desorption, together with resistance to radiation would be measured. Task 1: Find out the best deposition technique in cylindrical geometry. Task 3: Evaluate the vacuum properties of the films (Tc, SEY at RT and 40 K at the FCC-hh dipolar magnetic field and at the beam E-M frequency). Task 4: Evaluate the radiation damage of the film, in particular on its super properties. 	ance of FCC
Description of Work Description of Work In the FCC-hh the most probable range of temperature for the beam screen K. At such temperatures the resistivity of copper, the metal facing the bear unduly contribute to the global impedance. A possible solution would be to beam screen with HTC thin films and benefit of the very low electrical resis Though simple, this proposal is a technological challenge both in term of fe mplementation. This work package aims at investigating if HTS films can b ong and confined structure like the beam screen. Pulsed laser deposition w Test technique to be considered. In parallel, the physical and chemical proper- this special layer would be analysed. For example SEY, electron and photor desorption, together with resistance to radiation would be measured. Task 1: Find out the best deposition technique in cylindrical geometry. Task 2: Measure electronic properties of the films (Tc, SEY at RT and 40 K at the FCC-hh dipolar magnetic field and at the beam E-M frequency). Task 3: Evaluate the vacuum properties of the film: outgassing and degases induced by particle impingement. Task 4: Evaluate the radiation damage of the film, in particular on its supe properties.	ance of FCC
In the FCC-hh the most probable range of temperature for the beam screen (C. At such temperatures the resistivity of copper, the metal facing the bear unduly contribute to the global impedance. A possible solution would be to beam screen with HTC thin films and benefit of the very low electrical resis Though simple, this proposal is a technological challenge both in term of fe mplementation. This work package aims at investigating if HTS films can b ong and confined structure like the beam screen. Pulsed laser deposition w irst technique to be considered. In parallel, the physical and chemical prop this special layer would be analysed. For example SEY, electron and photor desorption, together with resistance to radiation would be measured. Task 1: Find out the best deposition technique in cylindrical geometry. Task 2: Measure electronic properties of the films (Tc, SEY at RT and 40 K at the FCC-hh dipolar magnetic field and at the beam E-M frequency). Task 3: Evaluate the vacuum properties of the film: outgassing and degase induced by particle impingement. Task 4: Evaluate the radiation damage of the film, in particular on its supe properties.	
In the FCC-hh the most probable range of temperature for the beam screen K. At such temperatures the resistivity of copper, the metal facing the bear unduly contribute to the global impedance. A possible solution would be to beam screen with HTC thin films and benefit of the very low electrical resis Though simple, this proposal is a technological challenge both in term of fe implementation. This work package aims at investigating if HTS films can b long and confined structure like the beam screen. Pulsed laser deposition w first technique to be considered. In parallel, the physical and chemical prop this special layer would be analysed. For example SEY, electron and photor desorption, together with resistance to radiation would be measured. Task 1: Find out the best deposition technique in cylindrical geometry. Task 2: Measure electronic properties of the films (Tc, SEY at RT and 40 K at the FCC-hh dipolar magnetic field and at the beam E-M frequency). Task 3: Evaluate the vacuum properties of the film: outgassing and degase induced by particle impingement. Task 4: Evaluate the radiation damage of the film, in particular on its supe properties. Deliverables	
Deliverables	im, would coat the stance. easibility and be coated in would be the perties of in induced
Deliverables	erconductin
D1. Identify best deposition techniques	
D1: Identify best deposition techniques D2: Measurement of electronic properties	Month
D3: Vacuum performances of coatings	Month 24
D4: RadTol of the coatings in particular superconducting properties	<u>Month</u> 24 30
CERN Resources (Manpower) [Person.Months (PM)]	Month 24 30 36
STAFF	<u>Month</u> 24 30
FELL/PJAS	Month 24 30 36 36
PhD	Month 24 30 36 36 36 8
CERN Resources (Material) [kCHF]	Month 24 30 36 36
	Month 24 30 36 36 36 8

Page 44 of 58

10 INSULATION VACUUM

L0.1 HELIUM	LEAKS MI	FIGATION	J			
Participant	CERN					
Person	16					
months						
Туре	All types					
Objectives						
Study the feas	sibility of an	alternativ	/e/compleme	entary pur	mping in th	e insulation
vacuum of the	FCC-hh, fo	r example	pumping by	/ cryosorp	tion.	
Description	of Work					
case of leak in have a massiv number of pur maintenance of because of the proposed that, mass cooling, installed in the of the adsorbe Task 1: Inves Task 2: Inves	the cryoge e impact or nps would b costs. In add required ra , after the p the insulati e system an ers would be tigate previ	nic pipes. the costs be 4 times dition, the adiation re bumpdown on vacuum on vacuum d cooled a the pump ious work propose ac ence with	If scaled up and the rel higher, whi number of s esistance, whi by mobile t h is permane at the lowest oing of heliu on the subje dsorbers suit the cryogen	to the FC ability of ch implies suppliers f nich in tur urbomole ently pum possible m gas. ect and wr able for ir ic system	C-hh, such the whole i also more for such pu n affect the cular group ped by ads temperatur ite a literat nstallation i (active or	e cost. It is os and the cold- orbers suitably re. The main role
						otherms for
Deliverables						otherms for Month
D1: Literature	review on s		vic			Month 6
	review on s		vic			Month
D1: Literature D2: Proposal c D3-1: Prototyp	review on sof adsorbers	s materials ber availat	vic S			Month 6 12 24
D1: Literature D2: Proposal c D3-1: Prototyp D3-2: Prototyp	review on of adsorbers oe of adsorb	s materials ber availat ber measu	pic S Die red			Month 6 12
D1: Literature D2: Proposal c D3-1: Prototyp D3-2: Prototyp	review on of adsorbers oe of adsorb	s materials ber availat ber measu	pic S Die red			Month 6 12 24
D1: Literature D2: Proposal c D3-1: Prototyp D3-2: Prototyp CERN Resour STAFF	review on of adsorbers oe of adsorb	s materials ber availat ber measu	pic S Die red			Month 6 12 24
D1: Literature D2: Proposal c D3-1: Prototyp D3-2: Prototyp CERN Resour STAFF FELL/PJAS	review on of adsorbers oe of adsorb	s materials ber availat ber measu	pic S Die red			Month 6 12 24 36
D1: Literature D2: Proposal o D3-1: Prototyp D3-2: Prototyp CERN Resour STAFF	review on of adsorbers oe of adsorb	s materials ber availat ber measu	pic S Die red			Month 6 12 24 36
D1: Literature D2: Proposal of D3-1: Prototyp D3-2: Prototyp CERN Resour STAFF FELL/PJAS	review on s of adsorbers be of adsorb be of adsorb rces (Manp	s materials ber availat ber measu bower) [P	vic S Dle red Person.Mon			Month 6 12 24 36 4 12

FCC-ST-0001

Page 45 of 58

11.1 RADIAT	ON HARDI	NESS ASSL	IRANCE (R	HA)		
Participant	CERN					
Person months	144					
Гуре	All types					
Objectives						elerator tunnel
infrastructu systems, e a. One cl size o alterna mainte b. Radiat degra shows 2. Two paralle developing equipmen 3. The FCC R8 in particula a. RHA c mater expose b. RHA c	ures and synthesis and synthes	vstems such control and lation, thus ring and cons. t FCC will re compone lementary a for service resistant tion Hardne all activities oed for FC CC radiation	h as power powering s requiring: communicat oughly scale ents under pproaches e electroni to FCC rad ss Assurances undertake C perform n environme	converters systems of t (i) high a ion techno e with energe r radiation are needed: cs, and do iation leve ce (RHA) dea en to ensura- to their co ent. part select	s, vacuum, he FCC will vailability o logies; (iii) gy and, as L n can beo reduce equ evelop elo ls. als with the design spec	itor the various cryogenics, RI be linked to the of systems; (ii) long-distance HC has shown come a majo ipment dose by ectronics and last aspect, and electronics and cifications afte sting, radiation
	FCC	Radiation Def Sy: Requirem Evalu	Environment inition stems hents/Design ation of part's vity to radiation Test		ation Needs Facilities	

Page 46 of 58

Description of Work

Background Work

Task 1: Field conditions and radiation levels at FCC

Task 2: Qualification Protocols: Define FCC qualification requirements (safety factors, sample size, procedures) for components and systems, including particle detectors and FE electronics. Evaluation of current irradiation facilities and testing infrastructure at CERN and available worldwide; proposal of upgrade programs for facilities at CERN, if needed.

Task 3: Equipment needs for the accelerator, particle detectors and service systems. Identification of technologies used at FCC and radiation levels they will be exposed to: propose strategies for RHA taking into account maintenance, reliability and remote operation. Catalogue of critical equipment (technology, supplier, function, etc.) and possible common developments.

Task 4: State of the art and development efforts on rad hard components for HL-LHC.

Intensive work is ongoing in terms of radiation hardening of electronics, components, materials and detectors in the framework of R2E, RD50, RD51, RD53, presently with a main focus on HL-LHC. Cost optimization for electronic systems will most likely have to consider the use of components of the shelf (COTS), thus a respective early technology analysis will be key throughout the development process. Assuring the continuity of these research projects will guide us towards the FCC and assure that expertise in radiation testing/hardening is kept, testing facilities are kept operational and state-of-the-art as well as forefront development electronics is tested and radiation hardened at any point in time. Evaluate HL-LHC VS FCC needs, identify common versus specific developments.

Experimental Work

Task 5: Technologies: define needed developments linked to technologies: wireless communication, miniaturization, optical transmission, compactness, on-chip optical/electrical, packaging, new materials...

 Example: i) establish a program to develop miniaturized prototypes, ii) develop prototypes, iii) test prototypes at irradiation facilities to define threshold for miniaturization with respect to radiation hardness

• Specific system development and qualification:

- Radiation monitoring systems (for detector and accelerator areas)
- Luminosity monitors
- Radiation-hard sensors and readout for environmental monitoring (P, T, H) for detector and accelerator equipment
- Interconnection technologies reliability
- High density assemblies on PCB
- New materials for electronics

Month
M6
M12
M14
M12
M20
M14

Page 47 of 58

D3-2. Catalogue of critical equipment (technology, supplier, function,	M18
etc.)	
D4.1 Evaluate HL-LHC VS FCC needs of rad hard components	M20
D5.1 Prototype status and definition of needed developments linked to	M20
technologies	_
D5.2 Radiation tester_of advanced components/systems	M36
D5.3 Radiation sensor	M40
CERN Resources (Manpower) [Person.Months (PM)]	
Projects needing injection of resources 2015-2017	
 FLUKA/TCAD/Spice model development in order to study <u>fur</u> <u>technologies</u> enabling a strategic decision process (focus as benchmarking platform, with a specific technology example e.g., for power devices) Resources: 1 PJAS or fellow 2-3y, 50kCHF for materials Evaluation of irradiation and testing <u>infrastructure requ</u> development, allowing for component and system tests in radiation environments and operation conditions (low tempera CERN (IRRAD, CHARM, GIF) Resources: engineering support (PJAS or FSU) for 2y, and development of temperature/humidity control stations, in with outside institute Development of a <u>radiation tester</u> of advanced componer representative radiation fields: hardened FPGA based platform a complex and fast components Resources: 1PJAS or fellow, 60kCHF material cost and module construction. Development of <u>radiation sensor</u> focus on mixed-radiation environ integrated sensor allowing for TID/DD/SEE relevant measurement be combined with larger setup in order to deduce also radiation h. Resources: PJAS or fellow 2-3y, 100kCHF material costs, I with outside institute. 	simulation and new materials <u>irements</u> and representative tures, etc.) a outsourcing o n collaboration nts/systems in allowing to tes outsourcing o onment and ar nts, possibly to ardness factors in collaboration
 complemented with the understanding of damage mechanisms. In Resources: PJAS or fellow 2-3y, 50kCHF material costs, i with outside institute. 	ardness factor
CERN Resources (Manpower) [Person.Months (PM)]	
STAFF	24
FELL/PJAS	120
FLUKA/TCAD/Spice model	30
Development of a radiation tester	30
Development of radiation sensor	30
R&D on materials radiation damage	30
PhD	0
CERN Resources (Material) [kCHF]	
Total budget estimate:	470
FLUKA/TCAD/Spice model development	50
Evaluation of irradiation and testing infrastructure requirements	210
Development of a radiation tester Development of radiation sensor	60 100
R&D on materials radiation damage	50
	50

FCC-ST-0001

Page 48 of 58

12 MAGNETS & MACHINE PROTECTION

12.1 POWERI Participant	CERN					
Person	81					
nonths	01					
Гуре	All types					
Dbjectives	An types					
Propose archit	octuros and	Itochnologi	oc for the p	rotoction of	bigh field	circuite
		-	•		-	clude operation
aspects, for ex						
maintenances			5 10 11111111		e intervent	
Description						
		ection of t	he main rir		a challen	ge because of:
			y (a factor 3			ge because of.
-			nsity (same	-		the conner
fract		current dei	ISILY (Same	as in Liic,		the copper
	,	uctance (at	least 3 time	as the LHC	2)	
						n the accelerato
,						ably to surface
nfrastructure			igiounu inin			ably to surface
Energy extra Task 1: Extra propose circui	iction of al polate exist t layout con	ing technolo figurations	ogies and sy compatible	stems for t with FCC so	he new re cale.	equirements and lergy recovery.
Energy extra Task 1: Extra propose circui Task 2: Propo Local magne Task 1: Analy of alternative the system, in pased on HL-L coils, Task 2: Evalue required diode	action of al polate exist t layout con ose new con t protectio yse the exist technologies nplementati .HC experies	ing technolo figurations cept for ene ing magnet s like Coupli on at the de nce, specify sting LHC m	ogies and sy compatible ergy dump s s) protection f ing-Loss Inc esign stage potential in agnet diode	stems for t with FCC so ystem, opt technologie luced Quen of the mag pplications bypass ass	the new re cale. imising en es and eva ich (CLIQ) nets. Repo for subdivi sembly and	luate applicabil . Optimisation o ort on feasibility ision of magnet d propose
Energy extra Task 1: Extra propose circui Task 2: Propo Local magne Task 1: Analy of alternative the system, in pased on HL-L coils, Task 2: Evalue required diode	action of al polate exist t layout con ose new con t protectio yse the exist technologies nplementati .HC experies	ing technolo figurations cept for ene ing magnet s like Coupli on at the de nce, specify sting LHC m	ogies and sy compatible ergy dump s s) protection f ing-Loss Inc esign stage potential in agnet diode	stems for t with FCC so ystem, opt technologie luced Quen of the mag pplications bypass ass	the new re cale. imising en es and eva ich (CLIQ) nets. Repo for subdivi sembly and	luate applicabil . Optimisation o ort on feasibility ision of magnet d propose
Energy extra Task 1: Extra propose circui Task 2: Propo Local magne Task 1: Analy pf alternative the system, in pased on HL-L coils, Task 2: Evalu- required diode magnets.	action of al polate exist t layout con ose new con t protectio vse the exist technologies nplementati .HC experies ate the exist e parameter	ing technolo figurations cept for ene ing magnet s like Coupli on at the de nce, specify sting LHC m	ogies and sy compatible ergy dump s s) protection f ing-Loss Inc esign stage potential in agnet diode	stems for t with FCC so ystem, opt technologie luced Quen of the mag pplications bypass ass	the new re cale. imising en es and eva ich (CLIQ) nets. Repo for subdivi sembly and	luate applicabil . Optimisation o ort on feasibility ision of magnet d propose
Energy extra Task 1: Extra propose circui Task 2: Propo Local magne Task 1: Analy pf alternative the system, in pased on HL-L coils, Task 2: Evalue required diode magnets. Deliverables	action of al polate exist t layout con ose new con t protectio vse the exist technologie nplementati .HC experien ate the exist e parameter	ing technolo figurations cept for ene ing magnet s like Coupli on at the de nce, specify sting LHC m s in connect	ogies and sy compatible ergy dump s s) protection f ing-Loss Inc esign stage potential in agnet diode	stems for t with FCC so ystem, opt technologie luced Quen of the mag pplications bypass ass	the new re cale. imising en es and eva ich (CLIQ) nets. Repo for subdivi sembly and	luate applicabil . Optimisation o ort on feasibility ision of magnet d propose re of the
Energy extra Task 1: Extra propose circui Task 2: Propose Local magne Task 1: Analy of alternative the system, in pased on HL-L coils, Task 2: Evalue required diode magnets. Deliverables D1. Analyse th D1. Extrapolation	action of al polate exist t layout con ose new con t protectio vse the exist technologies nplementati .HC experies ate the exist e parameter	ing technolo figurations cept for ene ing magnet s like Coupli on at the de nce, specify sting LHC m s in connect	ogies and sy compatible ergy dump s s) potection potential in agnet diode tion with the	estems for t with FCC so system, opt technologie luced Quen of the mag oplications bypass ass powering	the new re cale. imising en es and eva ich (CLIQ) nets. Repo for subdivi sembly and architectu	luate applicabil . Optimisation of ort on feasibility ision of magnet d propose re of the Month
Energy extra Task 1: Extra propose circui Task 2: Propo Local magne Task 1: Analy of alternative the system, in pased on HL-L coils, Task 2: Evalue required diode magnets. Deliverables D1. Analyse th D1. Extrapolation requirements	t layout con polate exist t layout con ose new con t protectio yse the exist technologies nplementati .HC experies ate the exist parameter	ing technolo figurations cept for ene ing magnet s like Coupli on at the de nce, specify sting LHC m s in connect ept echnologies	ogies and sy compatible ergy dump s s) potection f ing-Loss Inc esign stage potential in agnet diode tion with the	estems for t with FCC so system, opt technologie luced Quen of the mag oplications bypass ass powering	the new re cale. imising en es and eva ich (CLIQ) nets. Repo for subdivi sembly and architectu	luate applicabil . Optimisation of ort on feasibility ision of magnet d propose re of the Month M18
Energy extra Task 1: Extra propose circui Task 2: Propose Local magne Task 1: Analy of alternative the system, in pased on HL-L coils, Task 2: Evalue required diode magnets. Deliverables D1. Analyse the D1. Extrapolation requirements D2. Propose n	t layout con polate exist t layout con ose new con t protectio vse the exist technologies nplementati HC experies ate the exist parameter ne LHC conc te existing t	ing technolo figurations cept for ene ing magnet s like Coupli on at the de nce, specify sting LHC m s in connect ept echnologies for energy	bgies and sy compatible ergy dump s s) protection ing-Loss Inc esign stage potential in agnet diode tion with the and system dump syste	stems for t with FCC so ystem, opt technologie luced Quen of the mag pplications bypass ass powering	the new re cale. imising en es and eva ich (CLIQ) nets. Repo for subdivi sembly and architectu	luate applicabil . Optimisation of ort on feasibility ision of magnet d propose re of the <u>Month M18</u> M12 M24
Energy extra Task 1: Extra propose circui Task 2: Propo Local magne Task 1: Analy of alternative the system, ir	t layout con polate exist t layout con ose new con t protectio vse the exist technologies nplementati HC experies ate the exist e parameter <u>he LHC conc</u> te existing t <u>ew concept</u> on feasibility	ing technolo figurations cept for ene ing magnet s like Coupli on at the de nce, specify sting LHC m s in connect ept echnologies for energy	bgies and sy compatible ergy dump s s) protection ing-Loss Inc esign stage potential in agnet diode tion with the and system dump syste	stems for t with FCC so ystem, opt technologie luced Quen of the mag pplications bypass ass powering	the new re cale. imising en es and eva ich (CLIQ) nets. Repo for subdivi sembly and architectu	luate applicabil . Optimisation of ort on feasibility ision of magnet d propose re of the <u>Month</u> <u>M18</u> M12

Page 49 of 58

CERN Resources (Manpower) [Person.Months (PM)]	
STAFF	9
FELL/PJAS	36
PhD	36
CERN Resources (Material) [kCHF]	
Diode prototyping	250

Page 50 of 58

12.2 CONCEP	· ·	ECTURE O	F MACHINE	PROTECT	ION & INTE	RLOCKS
Participant	CERN					
Person	45					
months						
Туре	All types					
Objectives						
Develop the a	rchitecture o	of the mach	ine protecti	on and inte	erlock system	for a larger
accelerator sc	ale as comp	ared to LHC	2.			
Description	of Work					
Task 1: The s	tudy of thes	se new optio	ons of archit	ecture mus	st be linked t	o the machine
availability cor	ncepts.					
Task 2: Based	d on the out	come of the	e task 1, rev	view LHC co	oncepts and p	propose new
architecture of	f protection	systems to	assure mad	hine comp	onent protec	tion and
optimised ava	ilability.					
Deliverables						Month
D1. Analyse th	ne LHC avail	ability and	extrapolate	to the FCC	accelerator	M24
D2. Preliminar	y design re	oort				M24
CERN Resour	rces (Manp	ower) [Pe	rson.Mont	hs (PM)]		
STAFF						9
FELL/PJAS						36
PhD						0
CERN Resour	rces (Mate	rial) [kCHI	=]			
Prototypes						50

FCC-ST-0001

Page 51 of 58

12.3HTS MA		ECTION	1		1	1
Participant	CERN					
Person	45					
months						
Туре	All types					
Objectives		ation and the				
<i>,</i> ,					magnets wi	th HTS inserts,
including cold		/stems (link	s and curre	nt leads).		
Description of					f	
Quench detect		•		• •		
			based on a t	nresnola po	ssidly too si	ow/not
	ciently sens		inctrument	otion (high)	concitivity	and detection
						and detection quench before
it sta		on precurso	is and patte	in recognici		quenci belore
		tivo dotoctio	on principles	(ontical fib	ers magnet	tic, acoustic,
	o-frequency				ers, magner	tic, acoustic,
Task 1: Analy		,	tify the limit	ations for th	nis type of a	nnlications
Task 2: Study			,			
Task 3: Study						
Deliverables						Month
D1. Prelimina	ry report					M12
D2. Prototype	<u> </u>					M24
D3. Prelimina		feasibility				M36
CERN Resour	<u> </u>		rson.Montl	າs (PM)]		1
STAFF				- / / -		9
FELL/PJAS						0
PhD for tasks	1 & 3					36
CERN Resour	rces (Mate	rial) [kCHF	-1			
Prototypes			-			300
/						

Page 52 of 58

ANNEX A: MANDATE OF FCC SPECIAL TECHNOLOGY WP

The mandate of the FCC Special Technologies Work Package has been defined as follow:

- Study the special technologies including conceptual aspects required for the FCC accelerator and identify the possible design and performance limitations for the accelerator.
- Identify challenges, opportunities for technological breakthroughs and set the R&D program.
 - Understand impacts of technologies
 - Prioritize R&D topics
 - Define scope, schedule, cost guidelines
 - Reporting on Specific Technologies R&D Programs
- Set up collaborations to address standard FCC issues and R&D opportunities
- The R&D activities will then be followed in the frame of the Accelerator R&D Work Package which is sub-divided in three Sub-Work Packages:
 - High field Magnet Program
 - Superconducting RF Program
 - Special Technology Program (all except Magnet and RF)

Page 53 of 58

ANNEX B: SPECIAL TECHNOLOGIES WBS STRUCTURE (DRAFT)

To ease understanding the organisation of the diffenret items, the WBS struture has been rearraged accordingly:

Energy driven

- Beam transfer elements requirements and conceptual design

Power driven

- Collimation systems and absorber requirements and conceptual design
- Dump and stopper requirements and conceptual design

Beam driven

- Vacuum system requirements and conceptual design
- Proximity cryogenics for superconducting magnets and RF
- Beam diagnostics requirements and conceptual design

Reliability driven

- Machine protection system requirements and conceptual design
- Quench protection and stored energy management requirements and concepts

Radiation driven

- Shielding
- Normal magnet requirements and element conceptual design

Accelerator driven

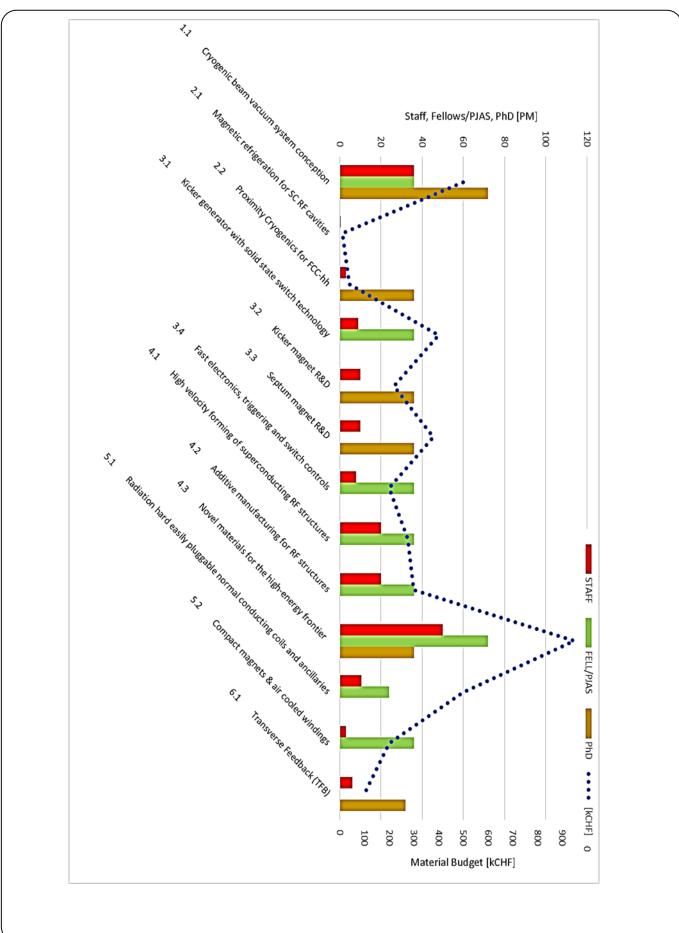
- Machine detector interface system needs and conceptual design
- RF system requirements and conceptual design
- Power converter requirements and conceptual design
- Control system requirements
- Element support, survey and alignment requirements and concepts

Page 54 of 58

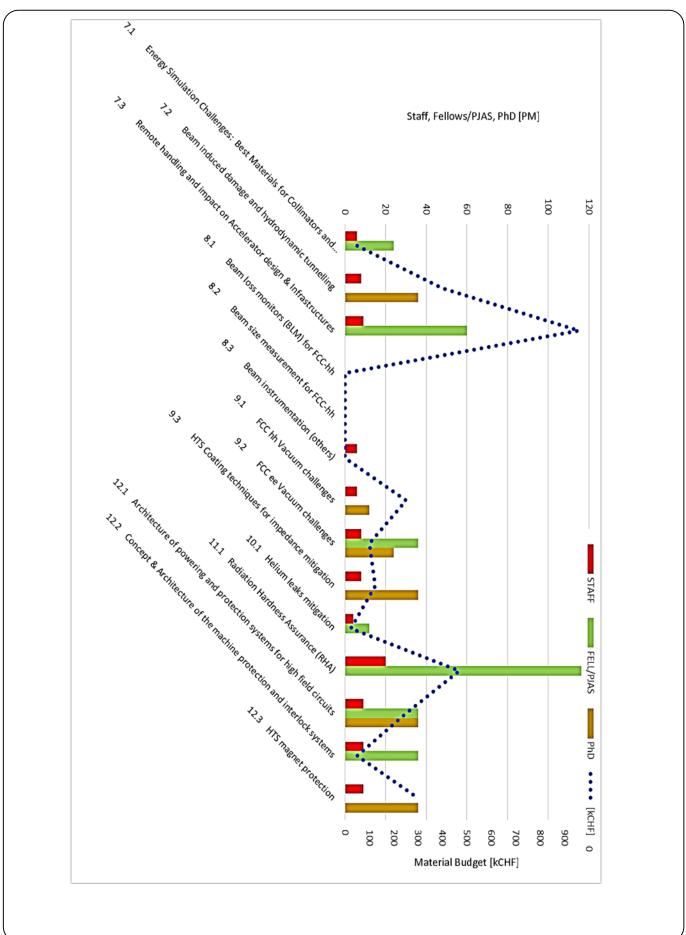
ANNEX C: CERN REFEREES FOR DIFFERENT ITEMS

The following Table aims at easing contacts with CERN Sub-Tasks Coordinators

WP #	Description	Contact Person
1	EuroCirCol WP4	Francis PEREZ (ALBA-SPAIN)
2	Cryogenic Challenges	Laurent TAVIAN (CERN)
3	Beam Transfer Challenges	Brennan GODDARD (CERN)
4	Manufacturing Technologies	Francesco BERTINELLI (CERN)
5	Normal Conducting Magnets	Davide TOMMASINI (CERN)
6	Transverse Feedback Systems	Wolfgang HOFLE (CERN)
7	Collimators & Dumps	Roberto LOSITO (CERN)
8	Beam Instrumentation	Rhodri JONES (CERN)
9	Beam Vacuum	Paolo CHIGGIATO (CERN)
10	Insulation Vacuum	Paolo CHIGGIATO (CERN)
11	Radiation Hardness of Electronics	Mar CAPEANS (CERN)
12	Magnets & Machine Protection	Andrzej SIEMKO (CERN)


Page 55 of 58

		CERN Re	CERN Resources (Manpower) [PM]	ıpower)	CERN Resources (Material)
		STAFF	FELL/PJAS	PhD	(kCHF)
1 EuroCirCol WP4 proposal [ALBA &	sal [ALBA & TE-VSC]				
1.1 Cryogenic beam vacuum system conception	m conception	36	36	72	
2 Cryogenics challenges [by Laurent	[by Laurent TAVIAN (TE-CRG)]				
2.1 Magnetic refrigeration for SC RF cavities	RF cavities	0.5	0	0	
2.2 Proximity Cryogenics for FCC-hh	hh	3	0	36	
3 Beam Transfer challen	Beam Transfer challenges [by Brennan GODDARD (TE-ABT)]				
3.1 Kicker generator with solid state switch technology	ite switch technology	9	36	0	
3.2 Kicker magnet R&D		10	0	36	
3.3 Septum magnet R&D		10	0	36	
3.4 Fast electronics, triggering and switch control	d switch controls	8	36	0	
4 Manufacturing technologies [by Francesco	ogies [by Francesco BERTINELLI (EN-MME)]				
4.1 High velocity forming of superconducting RF structures	rconducting RF structures	20	36	0	
4.2 Additive manufacturing for RF structures	structures	20	36	0	
4.3 Novel materials for the high-energy frontie	nergy frontier	50	72	36	
5 Normal Conducting ma	Normal Conducting magnets [Davide TOMMASINI (TE-MSC)]				
5.1 Radiation hard easily pluggab	Radiation hard easily pluggable normal conducting coils and ancillaries	10.5	24	0	
5.2 Compact magnets & air cooled windings	l windings	ω	36	0	
6 Transverse Feedback sy	Transverse Feedback systems [by Wolfgang HOFLE (BE-RF)]				
6.1 Transverse Feedback (TFB)		6	0	32	
7 Collimators & Dumps e	Collimators & Dumps energy simulations [by Roberto LOSITO (EN-STI)]				
7.1 Energy Simulation Challenges	Energy Simulation Challenges: Best Materials for Collimators and Dumps?	6	24	0	
7.2 Beam induced damage and hydrodynamic tunnelling	drodynamic tunnelling	80	0	36	
7.3 Remote handling and impact of	Remote handling and impact on Accelerator design & Infrastructures	9	60	0	


Page 56 of 58

	CERN R	Resources (Manpower) [PM]	npower)	CERN Resources (Material)
	STAFF	FELL/PJAS	PhD	[kCHF]
8 Beam Instrumentation [by Rhodri JONES (BE-BI)]				
8.1 Beam loss monitors (BLM) for FCC-hh	0	0	0	0
8.2 Beam size measurement for FCC-hh	0	0	0	0
8.3 Beam instrumentation (others)	6	0	0	0
9 Beam Vacuum [by Paolo CHIGGIATO (TE-VSC)]				
9.1 FCC hh Vacuum challenges	6	0	12	250
9.2 FCC ee Vacuum challenges	8	36	24	100
9.3 HTS Coating techniques for impedance mitigation	8	0	36	125
10 Insulation Vacuum [by Paolo CHIGGIATO (TE-VSC)]				
10.1 Helium leaks mitigation	4	12	0	25
11 Radiation Hardness of Electronics [Mar CAPEANS (PH-DT)]				
11.1 Radiation Hardness Assurance (RHA)	20	120	0	470
12 Magnets & Machine protection [by Andrzej SIEMKO (TE-MPE)]				
12.1 Architecture of powering and protection systems for high field circuits	9	36	36	250
12.2 Concept & Architecture of the machine protection and interlock systems	9	36	0	50
12.3 HTS magnet protection	9	0	36	300

Page 57 of 58

Page 58 of 58

