BSM Physics at the LHeC and FCC-he

G. Azuelos for the LHeC Study Group

http://lhec.web.cern.ch/

Office of Science

Office of FCC Week 2015

23-27 mars 2015 Marriott Georgetown Hotel

US/Eastern timezone

http://indico.cern.ch/event/340703/overview

Outline

- **+ The LHeC and FCC-he** → see <u>yesterday's session</u>
 - LHeC CDR published in 2012

+ High PT BSM physics

- LQ, contact interactions, compositeness, heavy/excited fermions, anomalous couplings...
- Supersymmetric signals:
 - RPV, BSM Higgs decays, improved precision
- composite Higgs
- expect many new bounds and potential discoveries from LHC
 - → improve on sensitivity, better potential in some cases

+ BSM Higgs and EWSB

- o for SM Higgs, → see M. Klein's talk earlier in this session
- Vector Boson scattering
 - anomalous couplings?, CP properties

Most results shown are preliminary: continuing studies to get better precision on potential discoveries and constraints on BSM models Detector performance simulation in progress → see P. Kostka's talk very forward boosts at FCC-he

Introduction: BSM physics

LHC is/will be the main discovery machine

- LHeC/FCC-eh has potential for improving, or possibly discover new phenomena
 - improved α_s pdf's (especially gluon)
 - → higher precision from measurements performed at LHC
 - cleaner environment than LHC → better S/N

+ Since LHeC CDR...

- Strong LHC constraints on new physics up to ~ 1 TeV
 - → window of discovery at LHeC remains open only for specific channels
 - → FCC-eh energy offers more potential
- o Higgs has been discovered !!
 - Naturalness problem:

quantum corrections must be fine-tuned to explain the low H mass

- \rightarrow is the Higgs truly the SM Higgs boson?
- → need to study deviations from SM
- → expect new physics at TeV scale, but expect deviations to be small
- strong dynamics: composite Higgs, technicolor
 - Higgs as a PGB,
 rich new phenomenology: ρ-like diboson resonances, vector-like quarks
- SUSY
 - strong bounds obtained on MSSM and possibly some simple extensions
 - need to explore extended SUSY parameter space
- FCC options
 - higher energies: greater window in TeV region

BSM Physics

Common Quantum numbers and interactions of e's and q's:

same electric charge, EW interaction, 1st of 3-flavor generations

- → suggest some fundamental symmetry, or common compositeness
- → leptoquarks? excited fermions?
- → new heavy fermions? vector-like fermions?

Leptoquarks

- E6 GUT, technicolor, Pati-Salam model: predict new fields, possibly having both B and L quantum numbers
- squarks decaying by R-parity violation $P_R = (-1)^{3(B-L)+2s}$

$$\mathcal{W}_{RPV} = \lambda_{ijk}^{'} L_i Q_j \bar{D}_k \quad \Rightarrow \begin{cases} e^- + \bar{d} \to \bar{\tilde{u}} \to e^- + \bar{d} \\ e^- + u \to \tilde{d} \to e^- + u \end{cases}$$

- LQ's can be scalar or vector, Fermion number 0 or 2 → Buchmüller classification
- at the LHC: pair production is essentially insensitive to LQ-q-e coupling λ
 - single production suppressed by dependence on λ
- at LHeC: single production, sensitive to λ

Present LHC bounds

1st generation Leptoquarks, for β =1: ATLAS and CMS (20 fb⁻¹):

 m_{LQ} < ~ 1000~GeV PAS EXO-12-041

can expect \sim 1.5 TeV (pair production) with full luminosity at LHC14

note: sensitive to $\lambda \ll e = \sqrt{4\pi\alpha} = 0.312$

Preliminary Study in Progress

Measuring the LQ quantum numbers with LHeC

- Quantum numbers and couplings:
 - o Fermion number:
 - can be obtained from asymmetry in single LQ production, since q have higher x than \overline{q}
 - at LHC: very poor asymmetry precision achievable in single LQ production

$$A = \frac{\sigma_{e^{-}} - \sigma_{e^{+}}}{\sigma_{e^{-}} + \sigma_{e^{+}}} \begin{cases} > 0 \text{ for } F=2 \\ < 0 \text{ for } F=0 \end{cases}$$

- o spin
 - at LHC, pair production of LQ-LQ leads to angular distributions which depend on the g-LQ-LQ coupling
 - → may need to look for spin correlations
 - at LHeC, $\cos \theta^*$ distribution is sensitive to the spin
 - vector leptoquarks can have anomalous couplings
- o couple chirally (i.e. to L or R but not both)?
 - could be probed by measuring sensitivity of cross sections to polarization of the electron beam
- o generation mixing?
 - does LQ decay to 2nd generation?
- o BR to neutrino, good S/B in vj channel

$$e_L^- u_L \rightarrow S_3 \rightarrow v_e d_L$$

Contact Interactions

New physics at a higher scale $\Lambda \gg \sqrt{s}$:

seen as an effective 4-fermion interaction

$$\mathcal{L} = \frac{4\pi}{2\Lambda^2} j_{\mu}^{(e)} j^{\mu(q)};$$

$$j_{\mu}^{(f=e,q)} = \mathbf{\eta}_{L} \ \overline{f}_{L} \gamma_{\mu} f_{L} + \mathbf{\eta}_{R} \ \overline{f}_{R} \gamma_{\mu} f_{R} + h.c.$$

 \Rightarrow all combinations of couplings $\eta_{ij} = \eta_i^{(e)} \eta_j^{(q)}; \quad q = u, d$

present LHC constraints on scale of qqll contact interaction:

sensitive to fermion radius 10⁻¹⁹-10⁻²⁰ m at LHeC (FCC)

$$\frac{\hbar c}{1.3 \text{ TeV}} = 1.5 \times 10^{-4} \text{ fm}$$

form factor:
$$f(Q^2) = 1 - \frac{1}{6} \langle r^2 \rangle Q^2$$

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma_{SM}}{dQ^2} f_e^2(Q^2) f_q^2(Q^2)$$

LH Scale of contact interaction at Future Colliders

FCC - rough scaling only - very preliminary

LHeC: see CDR 2012

Excited fermions

- Excited fermions could be produced directly if their mass is below compositeness scale

Assume spin = $\frac{1}{2}$, L, R doublets

- gauge interaction Lagrangian

$$\mathcal{L} = \frac{1}{2\Lambda} \overline{f}_{R}^{*} \sigma_{\mu\nu} \left[g \frac{\tau_{a}}{2} W_{\mu\nu}^{a} + g' f' B_{\mu\nu} + g_{s} \frac{\lambda_{a}}{2} G_{\mu\nu}^{a} \right] f_{L}$$

- contact interaction Lagrangian $\mathcal{L} = \frac{4\pi}{2\Lambda^2} j_{\mu} j^{\mu};$

$$e \xrightarrow{e^*}$$

$$j_{\mu} = \eta_{L} \overline{f}_{L} \gamma_{\mu} f_{L} + \eta_{L}' \overline{f}_{L}^{*} \gamma_{\mu} f_{L}^{*} + \eta_{L}'' \overline{f}_{L}^{*} \gamma_{\mu} f_{L} + h.c. + (L \Leftrightarrow R)$$

at LHC O.J.P. Éboli, S.M. Lietti, P. Mathews, Phys. Rev. D 65, 075003 (2002)

e* Mass [GeV]

LHeC: $e\gamma$ ($\sqrt{s}=1.4$ TeV)

LHeC: $e\gamma$ ($\sqrt{s}=1.9$ TeV)

T. Nguyet Trinh and E. Sauvan, 1st ECFA-CERN LHeC workshop (Divonne, 2008)

200 400 600 800 1000 1200 1400 1600 1800

LHC could probe up to 1-2 TeV

for
$$f = f' = 1$$
, $\Lambda = m_{e^*}$ (or $f/\Lambda = 1/m_{e^*}$)

O. Cakir, A. Yilmaz, S. Sultansoy, PR D70 (2004) 075011, A. Belyaev, C. Leroy, R. Mehdiyev, Eur Phys J C 41, s02, 1-10 (2005)

e-p colliders could extend sensitivity to f/Λ and mass reach to < c.m.

10⁻⁴

Heavy fermions/ colored bosons

heavy leptons:

- vector-like leptons: left and right chiralities have same transformation properties
 - predicted in GUT theories (E₆) or in Composite Higgs Models
 - couplings: eEZ, vEW, eEH; vNZ, eNW, vNH

able to discover Majorana neutrinos up to 700 GeV (for $E_o = 50$ GeV)

Majorana Neutrino Production in an Effective Approach
 (L. Duarte et al. 1412.1433)
 SM background from pγ → ℓ⁺ +3j+v pe⁻ → e⁺ +3j+2v_e

vector-like quarks?

single production of top partners,
 sensitive to couplings: qQZ, qQW, qQH;
 (coupling to light quarks)

diquarks

- predicted in superstring inspired E6 and composite mode
- could carry charge 1/3, 2/3, 4/3 and be scalar or vector
- in gp production

M Şahin and O. Çakir, arXiv:0911.0496

$$\mathcal{L}_{|B|=2/3} = \left(g_{1L}\bar{Q}_L^c i\tau_2 Q_L + g_{1R}\bar{u}_R^c d_R\right)DQ_1^c + \text{h.c.}$$

LHEC reach excluded vector and scalar diquarks can be distinguished by the angular distribution of their decays

Top quark FCNC coupling

$$\mathcal{L}_{NC}^{t} = g \frac{\kappa_{\gamma}^{t}}{\Lambda} \overline{t} \sigma_{\mu\nu} t F^{\mu\nu} + \text{h. c.}$$

Using γp option, with simple cuts, can reach better limits on κ/Λ than LHC

note:
$$\kappa/\Lambda = 0.01 \Leftrightarrow BR(t \to u\gamma) \sim 2 \times 10^{-6}$$

O. Cakir and S. Sultansoy, <u>PL B685, 170 (2010)</u>

Wtb anomalous couplings

J.A. Aguilar-Saavedra, NP B812 (2009) 181

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \ \gamma^{\mu} \left(\mathbf{V}_{\!L} P_{\!L} + \mathbf{V}_{\!R} P_{\!R} \right) t \ W_{\!\mu}^{-} - \frac{ig}{\sqrt{2}} \bar{b} \ \frac{\sigma^{\mu\nu} q_{\nu}}{M_{W}} \left(\mathbf{g}_{\!L} P_{\!L} + \mathbf{g}_{\!R} P_{\!R} \right) t \ W_{\!\mu}^{-} + h.c.$$
 RH vector LH & RH tensor

RH vector

ATLAS-CONF-2013-033/CMS PAS TOP-12-025 S. Dutta et al., arXiv:1307.1688

Wtb anomalous couplings

J.A. Aguilar-Saavedra, NP B812 (2009) 181

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \overline{b} \gamma^{\mu} \left(\mathbf{V}_{L} P_{L} + \mathbf{V}_{R} P_{R} \right) t W_{\mu}^{-} - \frac{ig}{\sqrt{2}} \overline{b} \frac{\sigma^{\mu\nu} q_{\nu}}{M_{W}} \left(\mathbf{g}_{L} P_{L} + \mathbf{g}_{R} P_{R} \right) t W_{\mu}^{-} + h.c.$$

RH vector

LH & RH tensor

95% limit for hadronic mode, at LHEC, with varying levels of assumed systematic error (1-10%)

ATLAS-CONF-2013-033/CMS PAS TOP-12-025

- S. Dutta et al., arXiv:1307.1688
- C. Schwanenberger at DIS2014

see also: I.A. Sarmento-Alvarado et al., 1412.6679

- LHeC provides a cleaner environment than LHC
- better assessment of V_{tb} (or better sensitivity to higher dimensional operators (V_L))
- small improvement on VR, poorer sensitivity for gR
- significantly better lepton-quark contact interactions

Comparison of LHC and LHeC for tensor component

- based on asymmetry of distributions of kinematic variables
- similar sensitivity with leptonic mode

Higgs: present status

Today, the Higgs boson looks very much like the fundamental BEH scalar of the SM \rightarrow expect small effects, if new physics is present

Best fit σ/σ_{sM} , averaged over different channels:

 $1.00\pm0.09(stat.)+0.08-0.07(theo.)\pm0.07(syst.)$

CMS-PAS-HIG-14-009

 $1.18 \pm 0.10(stat) \pm 0.07(expt) \pm 0.08(th.)$

ATLAS-CONF-2015-008

Couplings consistent with SM predictions:

expect improved precision, using LHeC pdf's

ATLAS-COM-CONF-2015-11

CP properties of Higgs boson

LHC has shown that the discovered Higgs boson is consistent with 0+ state, but: are there small additional dimension-5 anomalous couplings to the vertex H-W-W?

$$i\Gamma^{\mu\nu}(p_-,p_+)arepsilon_{\mu}(p_-)arepsilon_{
u}^*(p_+)$$

azimuthal angle distribution between E_T^{miss} and forward jet is sensitive to CP nature T. Plenh et al., arXiv:hep-ph/0105325

with 50 fb⁻¹, sensitivity up to λ^{\sim} 0.05 and λ^{\prime} \sim 0.2

S. Biswal et al., arXiv:1203.6285 and update

BSM in Vector Boson Scattering at FCC-he

VB Higgs production with BSM decay

explore RPV cases

$$H \rightarrow \chi_1^0 \chi_1^0 \rightarrow 3j \, 3j$$
 (resonances)

need to understand background...

Vector Boson scattering at high mass:

Charged Current mass dependence of cross section

anomalous TGC, QGC couplings in VVV, VVVV?

I.T. Cakir et al, 1406.7696:

- Is unitarity restored only by Higgs? are there new resonances (CH model)?
 - expect below ~ 2-3 TeV

$$e^-q \rightarrow e^-(q)WZ$$
, $(vq)WZ$

- \rightarrow look for deviations from SM predictions:
 - high background from QCD diagrams at LHC, absent at FCC-eh
 - challenging at LHC if no lepton trigger is used, and because of pileup

Vector Boson Scattering

preliminary!

typical cross sections for 2 TeV resonance (c_F =0, c_H =1, g_V =3, 120GeV x 50 TeV) Heavy Vector Triplet model, D. Pappadopoulo et al., JHEP 1409 (2014) 060, 1402.4431

- highly dependent on acceptance and performance of detector)
- LHC14: S = 0.12 fb $B_{QCD} = 4.2 \text{ pb}$ $B_{EW} = 300 \text{ fb}$
- FCC-eh S = 0.01 fb $B_{EW} = 100 \text{ fb}$

low cross section, but kinematics of signal distinct from background need v. good detector performance

possibly use hadronic decay of W and Z (boosted, high mass object)?

PDF impact on searches

- ▶ For SUSY: Searches near HL-LHC kinematic boundary may ultimately be limited by knowledge of PDFs (especially gluon at $x \rightarrow 1$)
 - Example: gluino production at HL-LHC

<u> ATL-PHYS-PUB-2014-010</u>

SUSY – RPV $\lambda'_{ijk}\hat{L}_{i}\hat{Q}_{j}\hat{D}^{C}_{k}$

R-parity violation \rightarrow squark production (similar to leptoquarks, with generation mixing)

 $\lambda'_{131} < 0.03 \frac{m_{\tilde{t}_L}}{100 \text{ GeV}}$ also strong bounds from $\beta \beta 0 v$

aso strong counts from pp c

Barbier hep/ph-0406039

W Hong-Tang et al., arXiv:1107.4461

- sensitivity up to 700-800 GeV with just 1 fb⁻¹, but expect constraints from LHC.
- · Very promising with high lumi, ~ 100 fb-1
- · requires good b-tagging efficiency

sbottom

lepton-flavor-conserving process under single coupling dominance hypothesis

$$\lambda'_{113} < 0.02 \frac{m_{\tilde{b}_R}}{100 \text{ GeV}}$$

also strong bounds from $\beta\beta 0\nu$

Barbier hep/ph-0406039

arXiV: 1401.4266

< 100 fb-1 needed for 1 TeV RPV sbottom 5s discovery

SUSY – RP conserving

- + \tilde{q} $\tilde{\ell}$ production
 - constraints from LHC
 - for large $\Delta m(\tilde{\ell} \chi_1^0) > 100 150 \text{ GeV}$ \rightarrow expect low p_T leptons
 - low $\Delta m(\tilde{q} \chi_1^0)$ constrained by monojet analysis

+ EWK SUSY

via Vector Boson Fusion

$$ep \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\pm} j j;$$

$$\downarrow \quad \tilde{\chi}_{1}^{0} W^{\pm^{*}}$$

$$\downarrow \quad j j \text{ (very soft)}$$

→ high background...

Conclusions

- Exotica and BSM physics
 - High mass leptoquarks at FCC-he, with sensitivity to coupling
 - lepton-quark compositeness: sensitivity still at LHeC
 - anomalous top couplings
 - •
- Higgs couplings need to be measured with high precision
 - coupling to gauge bosons HWW, HZZ: measure and probe anomalous couplings
- High precision measurements of proton (and nuclear) structure are the main goals of LHeC and FCC-he
 - improve dramatically precision of LHC and HL-LHC searches and measurements

higher sensitivity in all channels at FCC-he

Studies ongoing: a lot remains to be done

backup

The Large Hadron-electron Collider

Final electron focus

LHC proton beam

Interaction point / detector

Total circumfrence - 9km

10-GeV linac

2.0 km

+ LHeC Baseline Design: 60 GeV x 7 TeV, √s=1.3 TeV

should be synchronous with pp operation of LHC

- o L= 10^{33-34} cm⁻²s⁻¹, : Q^2_{max} = 10^6 GeV², 10^{-6} < x< 1,
- o 10-100 fb⁻¹/yr, 0.1-1 ab⁻1 total
- Linac-Ring (LR) option: now baseline design
 - energy recovery LINAC (ERL)

eventually possible Higgs factory γγ collider

+ FCC-he

- 80-100 km tunnel infrastructure in Geneva area
- o 80 (pol.), 120, 175 GeV x 50 TeV $\rightarrow \sqrt{s} = 2.8, 3.5, 4.2$ TeV
- colliding beams from FCC-ee and FCC-hh yields FCC-he luminosity of about 2x10³⁴ cm⁻²s⁻¹ at E_e=80 GeV and 2x10³³ cm⁻²s⁻¹ at 175 GeV;

Prealps

Schematic of an 80 - 100 km long tunnel

Aravis

Copyright CERN 2014

from F. Zimmermann, FCC Study Kickoff meeting, Feb 2014, Geneva

FCC-he detector layout

- Longer than LHeC in p direction (x 2 for calorimeters to contain showers)
- Same or slightly longer in electron direction (about 1.3 for 120 GeV)

Alessandro Pollini and Peter Kostka

https://indico.cern.ch/event/282344/session/15/contribution/100/material/slides/0.pdf

