LUVATA View on the Dream Nb₃Sn Conductor for FCC

Hem Kanithi

FCC Week, Washington, DC March 2015

Key Projects with Luvata Participation:

- NbTi for Fermi Lab (>90%), CERN-LHC (30%), GSI-SIS100
- Nb₃Sn for Fusion Programs
 - ITER Central Solenoid Model Coil (CSMC): 1991~1995
 - KSTAR Advanced Performance Strand (HP-3): 1997~2006
 - US & EFDA ITER-TF Prototype Strands: 2004~2007
 - US ITER-TF: 2009~2012
- High Jc Nb₃Sn Conductor Development for HEP
 - US CDP: 2001~2003
 - Next European Dipole (NED): 2007~2010
 - CERN Nb₃SN R&D for LHC Upgrades: 2014~Present

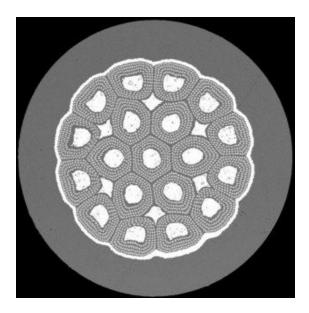
Mass Production Started 1996 with KSTAR:

- First fusion machine utilizing all Nb₃Sn for TF coils in mass production strand quantity.
 - 50% of Nb₃Sn: Produced 12 t of HP-3 type Cr-plated wire
 - 100% of NbTi: Produced 12 t for PF
 - Increased Nb₃Sn billet size to 60 kg, unit length > 13 km
 - Manufacturing equipment upgrade enabling mass production
 - Production rate achieved 1.8 t per month

- Enhanced Performance
 - Non-Cu J_c: 850-900 A/mm² (4.2 K, 12 T)
 - Non-Cu Q_h: 220-270 kJ/m³ (±3T cycle)

Equipment Upgrade for Larger Billet Unit

2.2 m - BB


1.5 m - BB

Nb₃Sn Production for US ITER-TF

Cr-plated TF SC Strand:

- 32 t of Cr-plated Nb₃Sn (6430 km)
- 2.3 t / mo. x 14 monthly batches

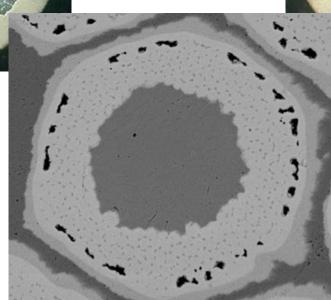
Cr-plated TF Cu Strand:

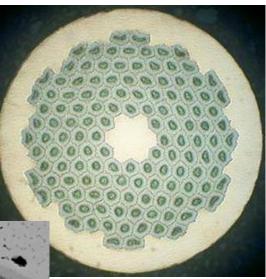
- 23 t of Cr-plated Cu (4795 km)
- 1.6 t / mo. x 14 monthly batches

Piece Length Performance - ITER TF Strand

- Average piece length:
 - Over 6600 m (mature process)
- Billets with no wire breaks:
 - 2/3 of billets in single length

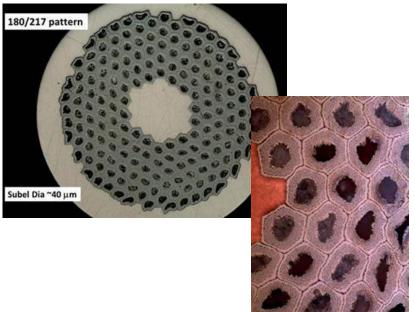
High Jc Nb₃Sn for HEP:

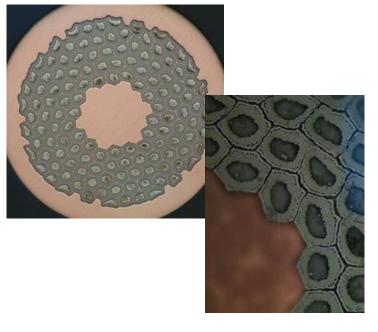

- Nb Rod-in-Cu Tube (RIT) Process
 - Ti addition through Sn core
- R&D for CERN
 - Wire for HL-LHC upgrades
 - Wire design for: Jc, D_{eff}, RRR & drawability
 - Restacking architecture
 - SnTi microstructure refinement



- 1.25 mm
- 258/313 pattern
- Cu: 55%
- Subelement: 45 μm

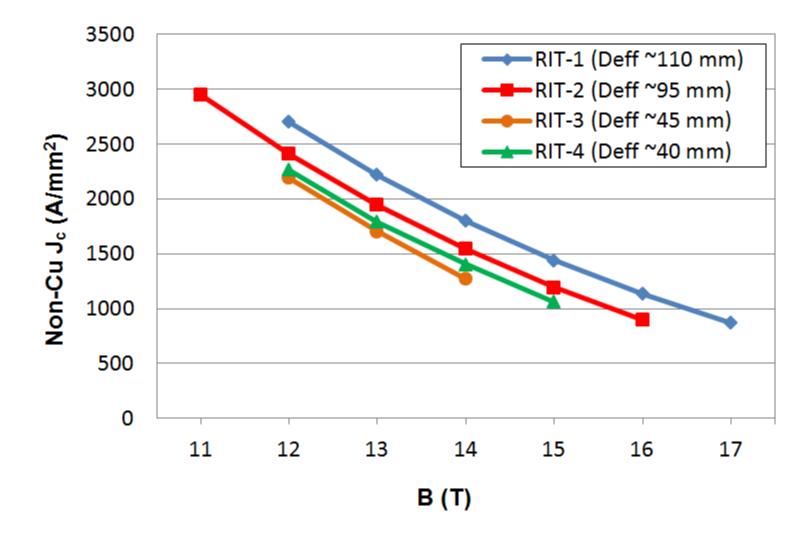
Design: B2


- 1.25 mm
- 132/139 pattern
- Cu: 54%
- Subelement: 78 µm

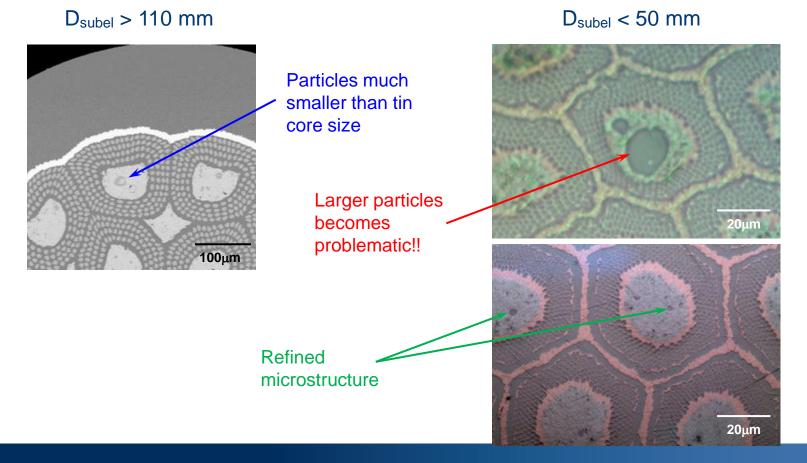

RIT-4: CERN R&D – 1st set

Rod-In-Tube (RIT) – Increased filament count, thicker Nb barrier and SnTi core with improved microstructure.

180/217 Stack

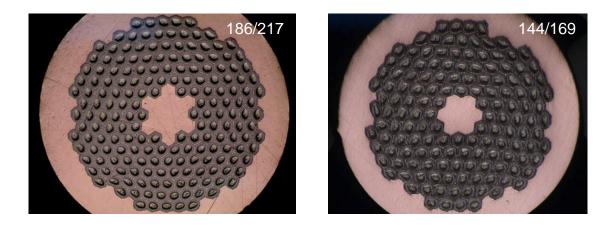

132/169 Stack

80% of wire > 400 m Subelement dia ~40 μm 82% of wire > 400 m Subelement dia ~45 μm


Non-Cu Jc vs. B:

Effect of Ti₆Sn₅ Precipitate Size:

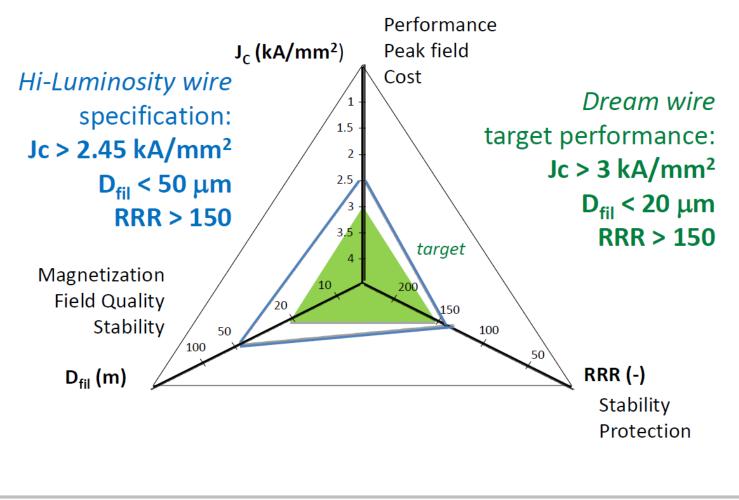
SnTi core approach required further refinement of microstructure and uniformity of precipitate for reduced subelement size.



RIT-4 (modified): CERN R&D (2nd Set)

- Some issues on the first set of restacks:
 - Some subelements distortion is considered a primary factor to low Jc and RRR.
- Modified Restacking Architecture:
 - A specially profiled copper tube along with conforming subelement shape to produce more uniform subelement shape and size.

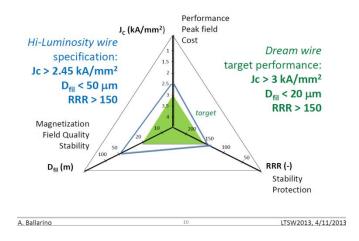
In the process of evaluating the performance.



Nb₃Sn Performance Targets:

			Hi-Lumi	FCC
Starnd Diameter	mm		0.7~0.85	0.7~1.0
Non-Cu Jc	A/mm ²	12 T	≥ 2450	≥ 3400
		15 T	≥ 1350	≥ 1850
		16 T	-	≥ 1500
μ ₀ ΔΜ	тт		-	≤ 150
σ(μ ₀ ΔM)	%		-	≤ 4.5
D _{fil}	μm		≤ 50	≤ 20
RRR	-		≥ 150	≥ 150
Unit Length	km		≥0.4	≥5
Cost (16 T, 4.2 K)	\$/kA-m		-	≤5

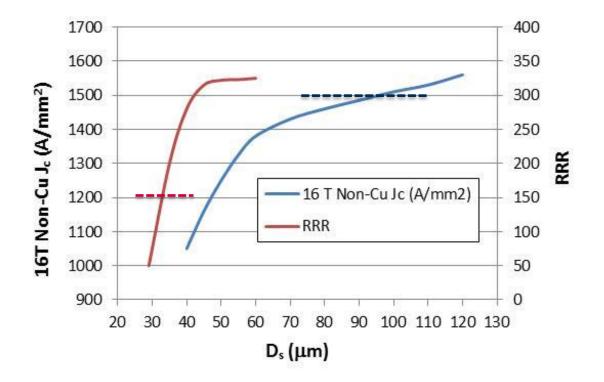
Nb₃Sn Specifications:



A. Ballarino

LTSW2013, 4/11/2013

4th & 5th dimensions


- Long piece lengths >5 km
- Reasonable cost

>5 km <\$5 /kAm at 16T

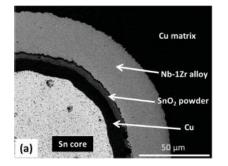
All these 5 dimensions are inter-related and counter-acting

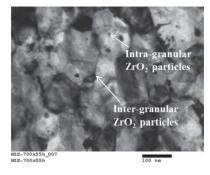
Subelement Size Effect: Typical Trend

Both J_c and RRR dropping rapidly below 40~50 μ m. **Extrinsic factors are responsible**

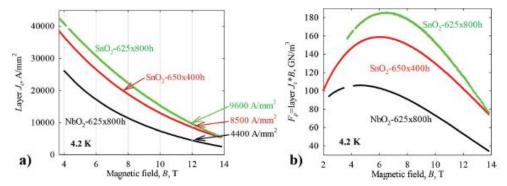
Basic Demands:

- Jc: Finer grain A15
 - Dopants to Nb (Zr, Hf etc) Layer Jc
 - Minimize SE distortion
 - Optimized HT
- RRR: Reliable barrier
 - Sufficient barrier thickness
 - Uniform deformation
 - Optimized HT
- Ds / Deff: Composite Ductility
 - Compatible materials
 - Low degradation in cabling
 - "Smart" wire architectures


Basic Demands:

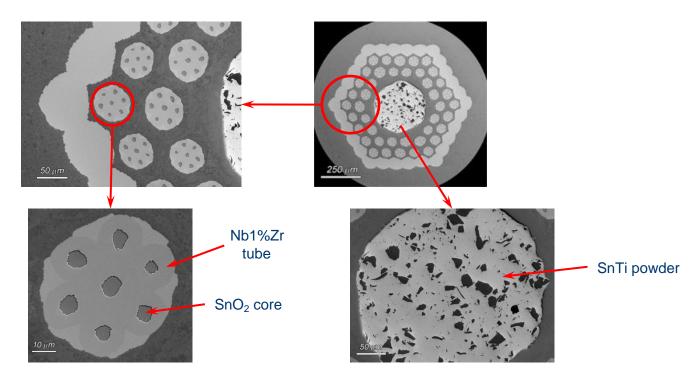

- Long Piece Lengths
 - Large restack assemblies (100 to 150 kg billet size)
 - Freedom from internal defects!
 - "Clean Room" factory environment
- Affordable Cost: Process driven
 - Large restack assemblies (100 to 150 kg billet size)

Potential for J_c Enhancement:


- Nb₃Sn grain refinement through internal oxidation.
 - NbZr alloy with oxygen supplied via oxide powder.

Substantial increase in J_c further is – *fundamentally feasible!!*

• Layer J_c measured nearly 10,000 A/mm² at 12 T, 4.2 K.



X. Xu and M. Sumption, et at. – Adv. Mater. 2015, 27, 1346-1350

Potential for Finer D_s:

- A wire layout for improved fabricability.
 - Oxygen introduced from SnO₂ core to Nb1%Zr tube.
 - Stacking architecture (hexagon or octagon) to promote uniform co-reduction.

L. Motowidlo – Supramagnetics SBIR Phase-2, 2015

Final Thoughts

- It is unlikely that current distributed barrier Internal-Tin or Tubular approaches will overcome the hurdles
- New and "out-of-the-box" thinking is necessary in the selection of material combination and wire architectures
 - Control of "Extrinsic Factors" is key
 - Questions need to raised early if an approach is scalable
- Scale-up of final stage assembly
 - Difficulties/challenges grossly ignored in the past
 - Several years of production practice to understand "economics"
- Proper effort and adequate funding are essential
 - > 10% of estimated SC budget for R&D! Will pay back multi-fold

Anyone can make a sample with exciting properties; Can you make 5 km with the same performance in every mm and in tonnage quantity? -Bruce Strauss

Thank you !

Partnerships beyond metals