

Nb₃Sn superconducting wire For HEP at WST

March,2015

FCC-WEEK 2015

Targets for future R&D on Nb₃Sn for HEP application

Strand diameter	(mm)	0.5~1.0	
Non-Cu J _c (16T, 4.2K)	(A/mm ²)	≥1500	
u ₀ ⊿M (1T, 4.2K)	(mT)	≤150	
$\sigma(u_0 \bigtriangleup M) (1T, 4.2K)$	(%)	≤4.5	
D _{eff} (u	m)	≤20	
RRR		≥150	(LHC)
Unit length (K	Lm)	≥5	28

At present, only Internal Tin (IT) and Powder in Tube (PIT) are possible choices to reach the targets for HEP application.

Progress about IT Nb₃Sn strand in WST

Strand diameter (mm)	0.5~1.0
Non-Cu J_c (12T, 4.2K) (A/mm ²)	≥2500
$u_0 riangle M (1T, 4.2K)$ (mT)	\
$\sigma(u_0 \bigtriangleup M) (1T, 4.2K)$ (%)	\
D _{eff} (um)	≤90
RRR	≥80
Unit length (Km)	≥1

A huge improvement in Non-Cu J_c of IT Nb₃Sn strand has been made in recent 2 years, though the gap is still indescribable.

Future work in WST

Improvement based on the present IT Nb₃Sn strand

increase Non-Cu J_c

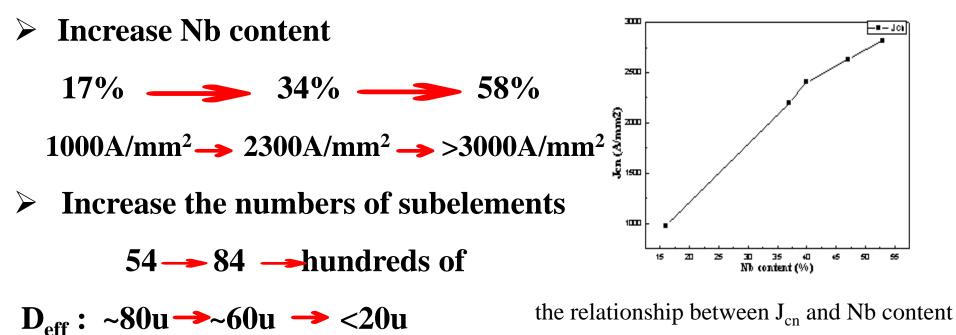
increase Unit length

decrease **D**_{eff}

increase **RRR**

increase the Nb content of strand

increase the numbers of sub-elements


improve heat-treatments
temperature (650℃~700℃)
time (40~70hs)
improve the process control

At present, the strand designed for high-field magnets use contains 54 sub-elements with the Nb content of 50%.

Future work in WST

Improvement based on the present IT Nb₃Sn strand

Future work in WST

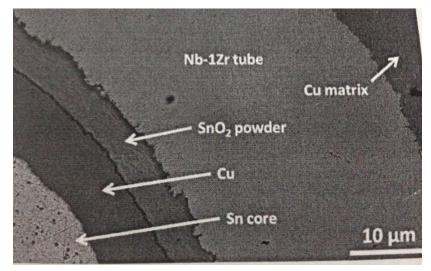
Improvement based on the present IT Nb₃Sn strand

> Improve heat treatment

reducing the heat treatment time properly $70hs \rightarrow \sim 40hs$ increasing the thickness of Nb barrier properly $5um \rightarrow 7um$ trying on new heat treatment schedule

Improve the process control

controlling the whole process strictly, that is material cleaning, assembly, and drawing


improving the environment of strand producing

Future work in WST

Challenge on APC in Nb₃Sn strand*

- ZrO₂ precipitates will form
 during the heat treatment;
- The precipitates refines the Nb₃Sn grain size.

SEM image of element

The SnO₂ powder will be the risk of breakage of strand drawing. * X. Xu, M. Sumption, X. Peng, and E. W. Collings, "Refinement of Nb₃Sn grain size by the generation of ZrO₂ precipitates in Nb₃Sn wires.

Thanks for your attention!