

Performance results from elliptical cavities

E.Elsen Connection to 2nd stage upgrade included in beam distribution layout Injector 1000 South Compressor Injector 1000 Injector 1010 Injector 1000 Injector 1010 Injector 1000 Injector 1010 Injector 101

Superconducting RF cavities

 Over the past two decades development on superconducting cavities has focussed on β=1 cavities at 1.3 GHz.

tremendous improvements in accelerating field Eacc and

quality Qo

cost improvements

 Results today from industrial production for the European XFEL

European XFEL

- x-ray Free-electron laser under construction in Hamburg
- will use a 17.5 GeV superconducting RF linac
 - 800 cavities in 100 cryomodules
 - $\langle E_{acc} \rangle = 23.4 \text{ MeV/m}$
 - $Q_0 > 1 \times 10^{10}$

Disclaimer

- All results shown here were obtained in collaboration with the European XFEL cold linac team in particular
 - Cavity manufacturers
 - E. Zanon
 - Research Instruments (RI)
 - CEA Saclay / Alsyom
 - INFN Milano
 - IFJ-PAN
 - DESY
- and specifically for the results of this talk
 - D Resche, D Kostin, L Monaco, J Schaffran, L Steder, N Walker, M Wiencek, Y Yamamoto

manks for providing the results!

Cavity preparation along two routes

Research Instruments
– 40 µm Final EP

Cavity preparation closely supervised by DESY...

Cavities built to spec...

Zanon

- 10 µm Flash BCP

...and INFN Milano

...no performance guarantee

Vertical acceptance test at DESY

- First cold acceptance test of cavities (built to order)
 - Results presented here based on 522 cavities delivered (including 20/24 ILC-HiGrade cavities)
 - Cavities equipped with He-tank and fixed high-Q antenna (ILC-HiGrade cavities w/o tank)
 - hence over-coupled at low and medium fields
 - Q(E) at 2K in fundamental mode (π-mode) only
 - long-pulse; few secs only, to protect HOM feed-thrus

Tests at AMTF

Acceptance criteria for vertical test

- Usable gradient
 - > 26 MV/m (10% above required average design operating gradient)
 - > 20 MV/m since May 2014 (to optimise number of re-treatments and re-tests)
- Definition of usable gradient by
 - Quench or
 - $Q_0 < 1x10^{10}$ or
 - Gradient at X-ray level:
 upper detector > 1x10⁻² mGy/min; lower detector > 0.12 mGy/min

Yield of cavities as received

- Average yield well-above 23.4 MV/m
- Final EP affects
 high field
 performance (RI
 reaches higher
 Eacc).

Cavities	522	(88%)
Tests	522	(63%)

	Tests	Average	RMS	Yield@20	Yield@26	Yield@28
ZANON	291	29.3	6.8	87%	78%	71%
RI	231	33.6	7.	93%	90%	86%
All	522	31.2	7.2	90%	83%	77%

Yield of cavities at usable field

- Useable field imposes operational requirements
 - E typically lowered by 4 MV/m
 - cause largely understood
 →retreatment

Cavities	521	(88%)
Tests	521	(63%)

	Tests	Average	RMS	Yield@20	Yield@26	Yield@28
ZANON	290	25.9	6.8	81%	56%	42%
RI	231	29.5	7.7	89%	76%	68%
All	521	27.5	7.4	85%	65%	54%

Cavities received and tested

- 522 cavities so far
 - typically
 10 cavities
 per month
 per vendor

Gradient performance by month

- Average gradient higher than required (23.4 MV/m)
- fairly steady results
- recently slight increase in gradient and reduction in spread

Impact of operational constraints

- typically maximum field and usable field differ by 4 MV/m
 - Q₀
 - Field emission

Q₀ over time

(unpublished)

Q₀ at23.4 MV/m

Q₀ at
 4 MV/m

Retreatment of cavities failing first acceptance test

- Reasons for re-treatment:
 - field emission (59 cavities)
 - quench at "low" gradient (6 cavities)
 - low Q-value at low gradient (4 cavities)
 - · leak (2 cavities)
 - other (7 cavities)

Assessment of procedure for retreatment

- Optical inspection often informed subsequent step
 - in most cases an additional High-Pressure-Rinse (HPR) removed the emitter
 - sometimes manufacturer mechanically removed surface irregularities

Effect of retreatment: Gradient

	Before	After
Tests	78	78
G_{AVG} (MV/m)	18.5	26.1
G_{RMS} (MV/m)	6.3	6.7
yield @ 20MV/m	40%	82 %
yield @ 26MV/m	12 %	54 %
yield @ 28MV/m	8%	47 %

Effect or retreatment: Q₀

Module tests at AMTF

Development of Useable Gradient in Cryomodule

Groups of 8 cavities mounted in 1 cryomodule

(unpublished)

Operational gradient limitation at 31 MV/m imposed

Development of average Useable Gradient in Cryomodule

- Degradation not yet understood
 - Intense manual labour in mounting string of cavities
- Gradient certainly sufficient for European XFEL

		Average	RMS	min	max
VT	159.	33.1	3.4	24.3	40.2
CM	159.	28.2	4.3	14.5	35.2

Cryomodule XM30

Conclusions

- Industrial production of 1.3 GHz elliptical cavities for the European XFEL is in full swing
 - Gradient and Q₀ exceed requirements for European XFEL
 - ILC requirements ($\langle E_{acc} \rangle = 31.5$ MV/m \pm 20%) can be met, particularly when allowing for second treatment step
 - Gradient degradation in modules remains a concern for the ILC and a nuisance for European XFEL