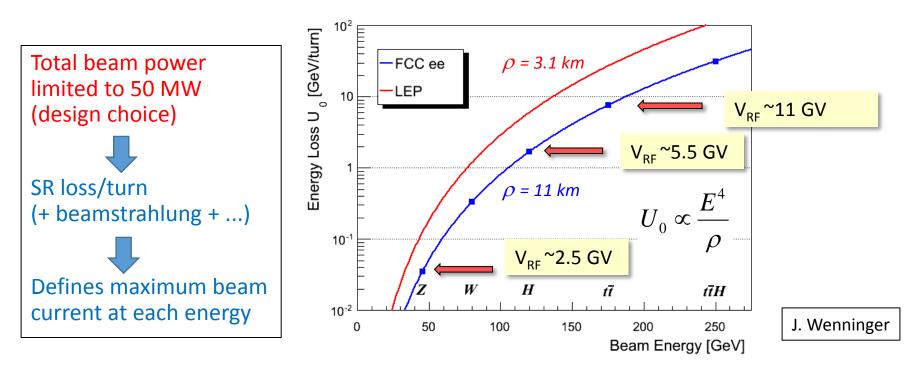


RF scenarios and challenges for FCC-ee

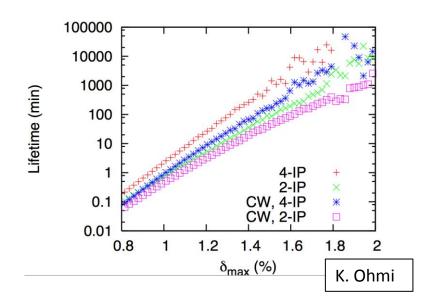
A. Butterworth, O. Brunner, CERN

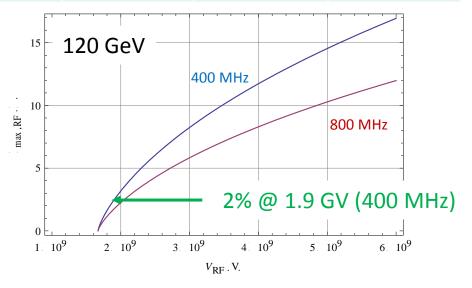
with input from <u>R. Calaga</u>, E. Jensen, S. Aull, E. Montesinos, U. Wienands



- Operation at different energies
 - Cavity options, layout and staging
- RF in different FCC-ee operation modes: H, tt, Z
 - Fundamental power & beam loading
 - Higher order mode power
- Power sources
- Conclusions and topics for R&D

parameter	FCC-ee baseline			
	Z	W	Н	t
E _{beam} [GeV]	45	80	120	175
SR energy loss/turn U ₀ [GeV]	0.03	0.33	1.67	7.55
current [mA]	1450	152	30	6.6
P _{SR,tot} [MW]	50	50	50	50




Beamstrahlung

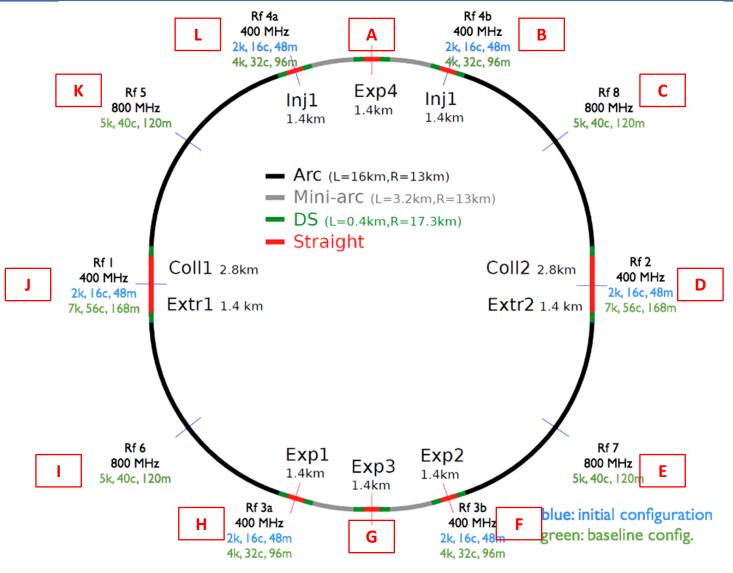
- Beamstrahlung increases the energy spread
- Need slightly more RF voltage to provide additional momentum acceptance

parameter	Z	W	Н	t
E _{beam} [GeV]	45	80	120	175
SR energy loss/turn U ₀ [GeV]	0.03	0.33	1.67	7.55
σ _{δ,SR} [%]	0.052	0.092	0.139	0.202
$\sigma_{\delta,tot}$ [%] (w beamstr.)	0.061	0.104	0.154	0.215

Staging for operation

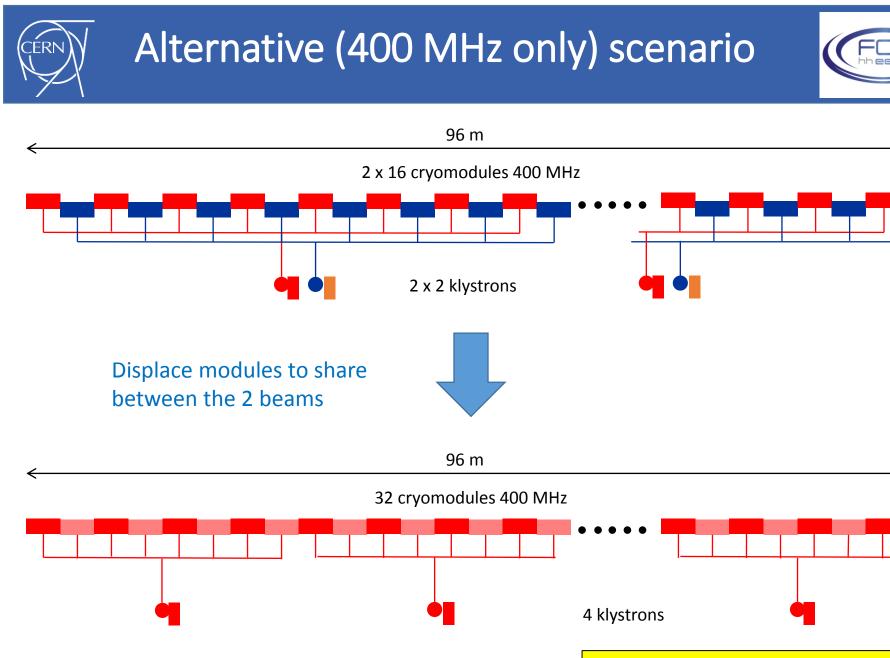
- Phase 1: Install enough V_{RF} to reach the Higgs in first stage
 - 1.9 to 2.2 GV, ~20 MW/beam, 12 mA Higgs
 - "Low" Luminosity Higgs (12 mA) and Z (60 mA)

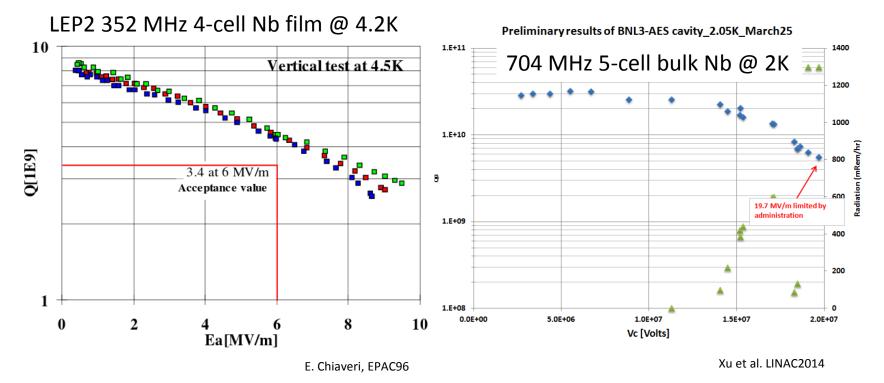
- Phase 2: Full installation of 400 MHz RF, Higgs & Z at nominal intensity
 - Higgs, high Luminosity: 5.5 GV, 30-50 MW/beam, 18-30 mA
 - Z, high currents: 2.5 GV, 30-50 MW/beam, 870-1450 mA



- total 50 MW/beam
- ttbar 6.6 mA/beam

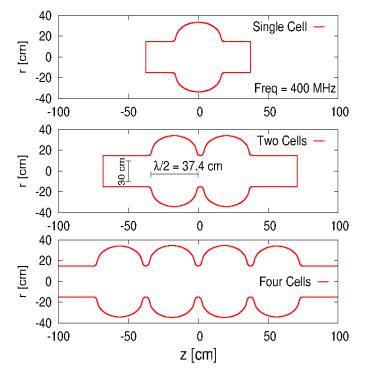
FCC-ee RF layout (per ring)




Beam Energy	Parameter	Unit	Initial	Full	Baseline
			400 MHz	400 MHz	400/800 MHz
Power (=# tubes)		MW	12	30	50
Max. Rf voltage		MV	1900.00	4700.00	10700.00
45 GeV (Z running)					
	beam current	mA	350.000	850.000	
	# bunches		4000	10000	
	Luminosity	/cm²/s	5.06E+034	1.53E+035	
80 GeV (W running)					
	beam current	mA	36	90	150
	# bunches		1100	2700	4490
	Luminosity	/cm²/s	1.75E+034	5.89E+034	1.19E+035
120 GeV (H running)					
	beam current	mA	7.2	18	30
	# bunches		320	800	1360
	Luminosity	/cm²/s	4.89E+033	2.34E+034	5.09E+034
175 GeV (t-tbar running)					
	beam current	mA			0.0065
	# bunches				98
	Luminosity	/cm²/s			1.43E+034

Talk by Uli Wienands tomorrow

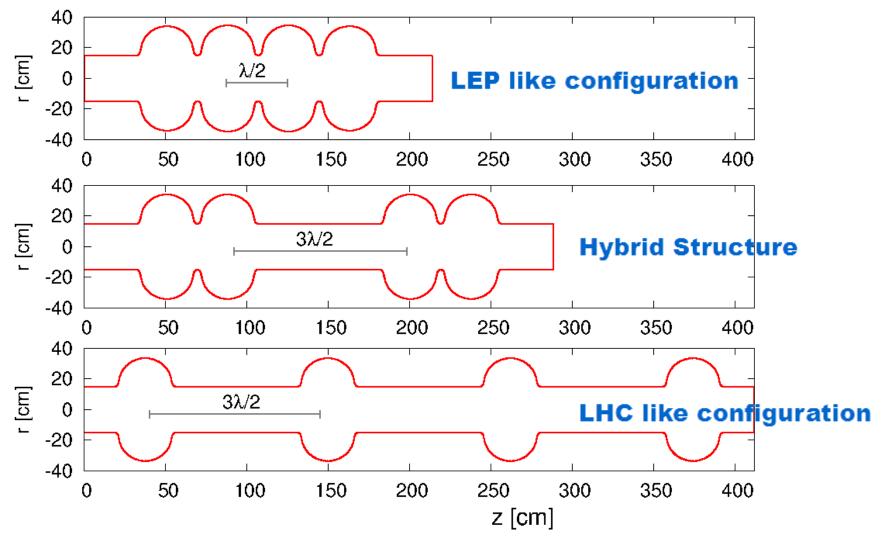
- 800 MHz
 - higher Q₀ and MV/m, lower heat load and shorter RF sections
- 400 MHz
 - better for HOM loss factor
 - lower Q₀, higher heat load but 4.5 K instead of 2K ?
 - lower MV/m, longer RF sections


Talk by Sarah Aull this afternoon

Also Nb₃Sn, M. Liepe this morning

400 MHz cavity options

	1-Cell	2-Cells	4-Cells
L[m], Active	.374	.748	1.5
L[III], ACIIVE	.374	.740	1.5
V [MV] /cav	3.75	7.5	15
Ep /Ea	3.1	3.3	3.3
Bp [mT]/Ea	4.2	4.7	4.7
R/Q [Ω]	87	169	310
U [J]	0.54	1.3	2.7
G [Ω]	297	297	297


R. Calaga

- 400 MHz cavities with 1, 2 or 4 cells considered
 - 4 cells better for "real estate" gradient
 - Single cell has lowest HOM loss factor, but 2-cell can be almost as good (mode cancellation)

Add ~50 cm on each side for end-group tapers

RF power: 120 GeV, 12 mA

	1-cell	2-cell	4-cell	
RF voltage [MV]		5500		
SR power per beam [MW]		50		
Synchronous phase [deg]	162.3			
Gradient [MV/m]	10			
Active length [m]	0.375	0.75	1.5	
Voltage/cavity [MV]	3.8	7.5	15.0	
Number of cavities	1467	734	367	
Total cryomodule length [m]	2569	1468	1012	

Optimistic but realistically achievable

1467 cells @10 MV/m RF sections 1 – 2.5 km per beam

R/Q [linac ohms]	87	169	310
RF power per cavity [kW]	34.1	68.1	136.2
Matched Qext	4.7E+06	4.9E+06	5.3E+06
Bandwidth @ matched Qext	84.3	81.9	75.1
Optimal detuning [Hz]	-132.6	-128.8	-118.1

cf. LHC couplers 500kW CW

Quite small → careful tuning design Moderate detune

Total heat load around 80 kW (x2)

Q ₀ [10e9]	3.0		
Heat load per cavity [W]	53.9	110.9	241.9
Total heat load per beam [kW]	79.0	81.4	88.8

RF power: 45.5 GeV, 1.45 A

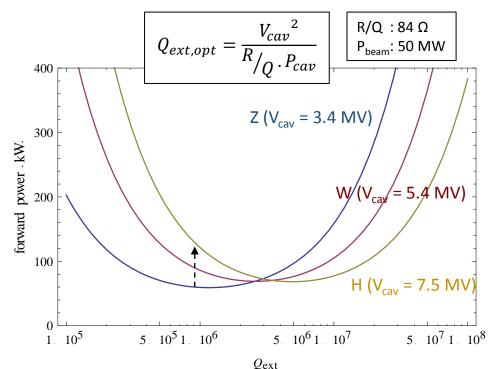
	1-cell	2-cell	4-cell	
RF voltage [MV]		2500		
SR power per beam [MW]		50		
Synchronous phase [deg]	179.2			
Gradient [MV/m]	10			
Active length [m]	0.375	0.75	1.5	
Voltage/cavity [MV]	1.7	3.4	6.8	
Number of cavities	1467	734	367	
Total cryomodule length [m]	2569	1468	1012	

R/Q [linac ohms]	87	169	310
RF power per cavity [kW]	34.1	68.1	136.2
Matched Qext	9.8E+05	1.0E+06	1.1E+06
Bandwidth @ matched Qext	408	207	364
Optimal detuning [Hz]	-14804	-14388	-13196

Q ₀ [10e9]	3.0		
Heat load per cavity [W]	11.1	22.9	49.9
Total heat load per beam [kW]	16.3	16.8	18.3

Large detuning to compensate reactive beam loading $\Delta \omega / \omega = \frac{I_b \cos \varphi_s R / Q}{V}$

cf. revolution frequency 3 kHz
→ will need strong RF feedback to control coupled bunch modes



Power couplers: Fixed or variable?

parameter	Z	W	н	t
E _{beam} [GeV]	45	80	120	175
RF voltage [GV]	2.5	4	5.5	11
current [mA]	1450	152	30	6.6
Matched Qext	1 x 10 ⁶	2.6 x 10 ⁶	5 x 10 ⁶	5 x 10 ⁶

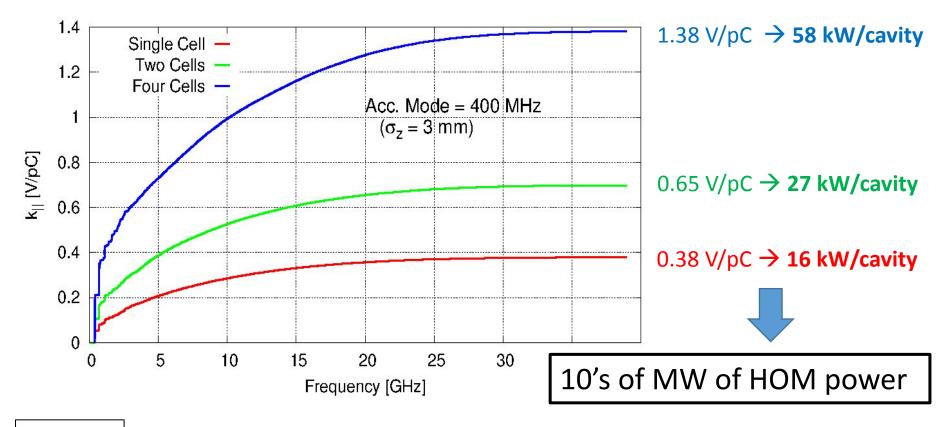
- Choose Q_{ext} for optimum power transfer to beam
- Matching a fixed coupler for the Z costs power at the H
- But: variable coupler costs around 2-5 x fixed
- Couplers are a major cost driver of cryomodule
- Trade-off to be considered

Cavity higher order mode power

parameter	Z	W	н	t
current [mA]	1450	152	30	6.6
no. bunches	16700	4490	1360	98
<i>N_b</i> [10 ¹¹]	1.8	0.7	0.46	1.4
σ _{z,SR} [mm]	3.29	2.02	1.62	2.31
σ _{z,tot} [mm] (w beamstr.)	3.80	2.27	1.80	2.45

HOM power
$$P_{avg} = (k_{loss} Q) I_{beam}$$

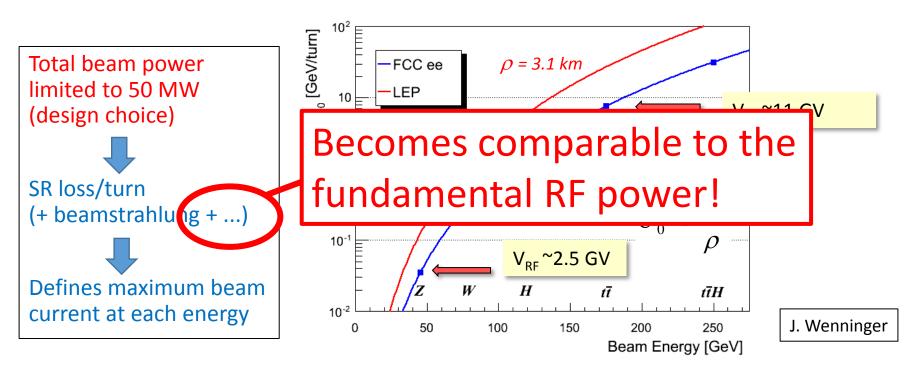
HOM an issue especially for Z running:
Short bunches
high bunch population
high beam current


Longitudinal loss factors

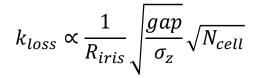
$$P_{avg} = (k_{loss}Q) I_{beam}$$

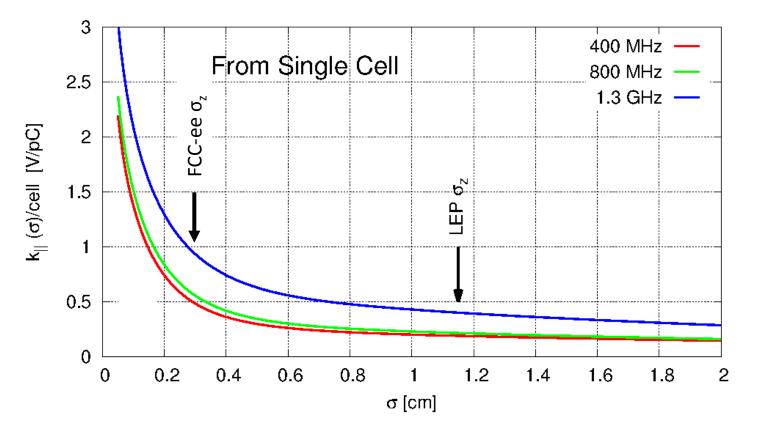
1 V/pC ~42 kW of HOM power/cavity @ Z nominal

4-cell cavities starts to become unfeasible



R. Calaga

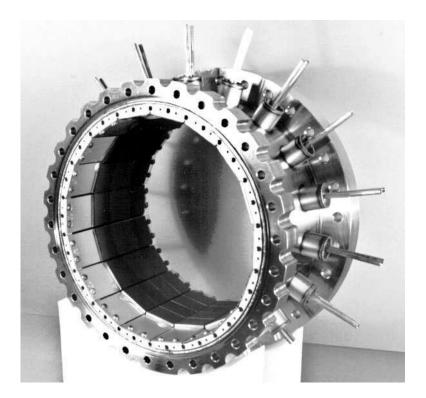

parameter	FCC-ee baseline				
	Z	W	н	t	
E _{beam} [GeV]	45	80	120	175	
SR energy loss/turn U ₀ [GeV]	0.03	0.33	1.67	7.55	
current [mA]	1450	152	30	6.6	
P _{SR,tot} [MW]	50	50	50	50	

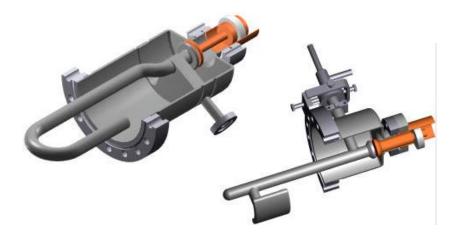


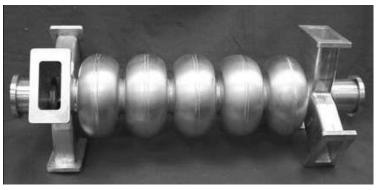
Loss factor vs. bunch length

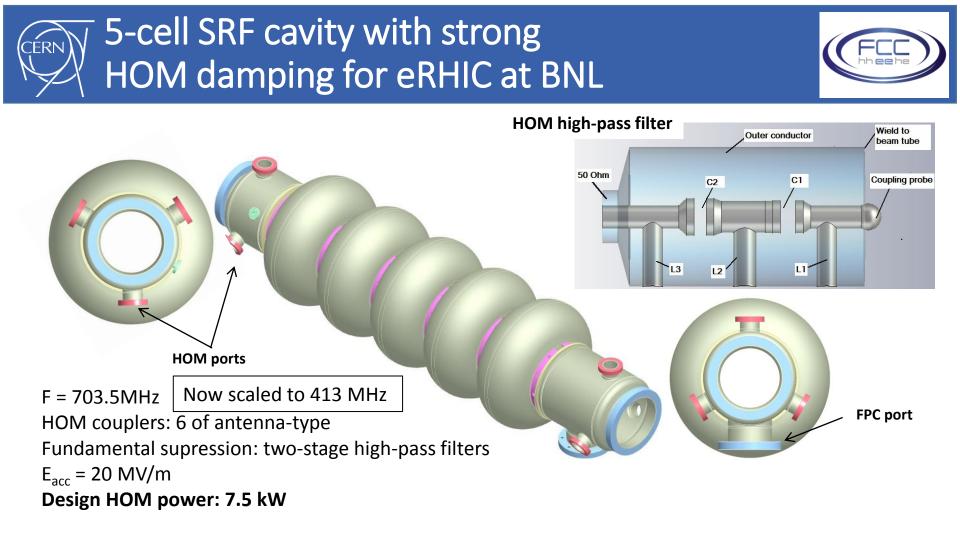
Note: 1-cell \geq 1 V/pC for < 2mm

R. Calaga


*Remember: $400 \rightarrow 800$ MHz: approx x1.5 increase in # of cells

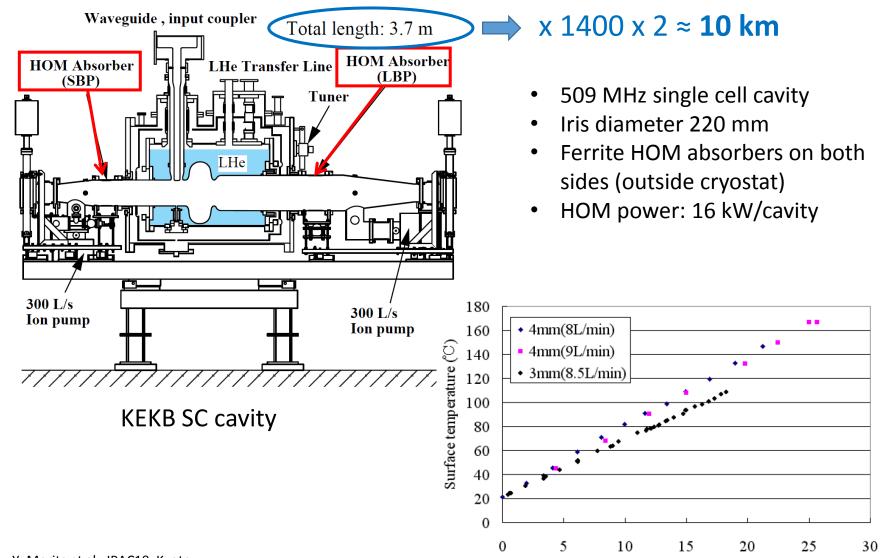

HOM power extraction


Cornell/KEKB like ferrites, 300K ~20 kW (approx 8°C/kW temp rise)



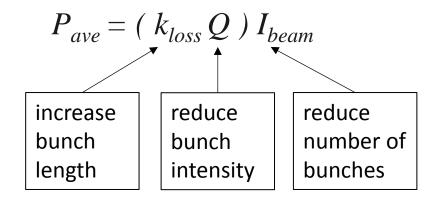
LEP/LHC like loops, 4.5K ~1 kW maximum

Waveguides

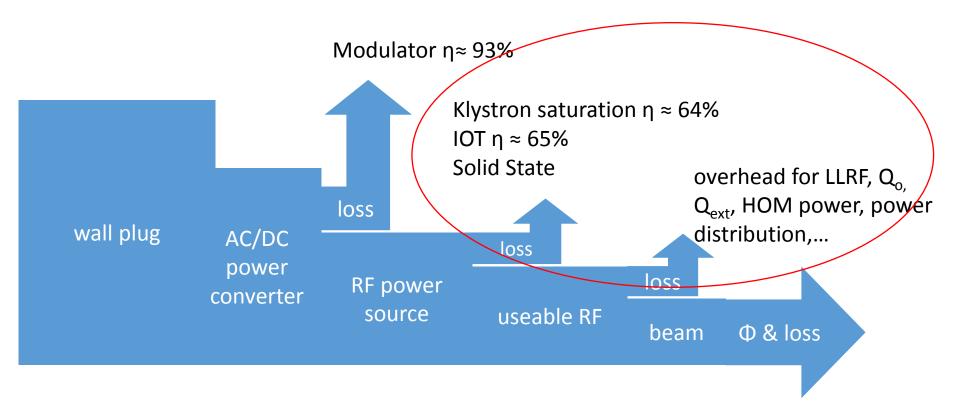

- BNL3 cavity optimized for high-current applications such as eRHIC and SPL.
- Three antenna-type HOM couplers attached to large diameter beam pipes at each end of the cavity provide strong damping
- A two-stage high-pass filter rejects fundamental frequency, allows propagation of HOMs toward an RF load.

S. Belomestnykh later this morning

Warm beamline absorbers


Y. Morita et al., IPAC10, Kyoto

Absorbed power (kW)



- HOM power may well be a severe limitation for the Z running (with the currently proposed beam intensity)
- R&D on cavities with low loss factors and strong HOM damping ?
- Design of compact warm absorber solution to avoid very long RF sections & minimize heat load due to cold/warm transitions ?
- In the last resort, what compromises are possible on the beam parameters ?

The whole system must be optimized – not one efficiency alone

- ≈ 40 kW / cell (2cells cavities < 100kW) opens the way to different powering schemes
 - 1 klystron powering several cavities (long WG, power splitting, etc)
 - 1 solid state amplifiers
 - 1 IOT's

- per cavity
- 1 tetrodes (or diacrodes)

Need to consider the whole system and the actual point of operation

- Ideally:
 - Small
 - Highly Efficient
 - Reliable
 - With a low power consumption in standby or for reduced output power

3 talks this afernoon: G. Sharkov, C. Lingwood, M. Jensen

- Iterations are ongoing on RF scenarios and staging, choice of cavities and cryomodule layout, RF frequency and cryogenic temperature.
- The major challenges come from the requirements for both the highest possible accelerating voltage and very high beam currents with the same machine.
- HOMs will be a major issue for running at the Z pole, and will dictate to a large extent the RF system design.
- Variable Q_{ext} fundamental power couplers would seem to be desirable for energy efficiency
- Strong RF feedback will be necessary for Z pole running to suppress coupled bunch modes driven by the fundamental cavity impedance

- SRF cavity development: cavity design, coatings, Q₀ and max. gradient, Q-slope of Nb film cavities
- HOM damping systems: highly damped cavities, compact warm absorbers
- Production optimization
- Cryomodule design and assembly (including auxiliaries, tuner etc, mechanical stability, industrialization & production costs)
- Power generation and distribution, circulators, distribution schemas, klystrons vs IOTs and SS
- Power couplers, Q_{ext} range
- LLRF: Fast cavity feedbacks for coupled bunch modes. Cavity trip handling

Thank you for your attention!