WIMP Dark matter at Future Circular Colliders

Lian-Tao Wang University of Chicago

FCC week. Washington DC, March 26, 2015

We have solid evidence for dark matter:

Dark matter candidate?

- We know very little. Vast range of possibilities
 - ▶ Can be 10^{-31} GeV to 10^{48} GeV.
- WIMPs
 - A compelling story.
 - Most relevant for the collider searches.
- Other candidates, axion, sterile neutrino...
 - Interesting. Another talk. I will focus on testing WIMP here.

WIMP miracle

- If $g_D \sim 0.1~M_D \sim 10s~GeV$ - TeV

▶ We get the right relic abundance of dark matter.

- Major hint for weak(±) scale new physics!

WIMP miracle

- More precisely, to get the correct relic abundance

$$M_{\rm WIMP} \le 1.8 \,\,{\rm TeV} \,\,\left(\frac{g^2}{0.3}\right)$$

- Much of the parameter space out of reach for the LHC.

"standard" story.

- WIMP is part of a complete model at weak scale.
- It's produced as part of the NP signal, shows up as missing energy.
 - Dominated by colored NP particle production: eg. gluino.
- The reach is correlated with the rest of the particle spectrum.

"standard" story.

- WIMP is part of a complete model at weak scale.
- It's produced as part of the NP signal, shows up as missing energy.
 - Dominated by colored NP particle production: eg. gluino.
- The reach is correlated with the rest of the particle spectrum.

"standard" story.

Of course, still plausible, will keep looking. Higher energy \Rightarrow higher reach

Back to basics

- pair production + additional radiation.

- Mono-jet, mono-photon, mono-...
- Have become "Standard" LHC searches.

At future colliders

Snowmass, 2013

M. [GeV]

D5

Going beyond the EFT

- Valid as field theory?
 - Already questionable in run 1, will be quite problematic at for run 2.
 - ▶ Much worse at 100 TeV. Overestimation of the reach.
- At the same time, missing other physics opportunities, such as additional states to look for.

Going beyond the EFT

- Valid as field theory?

- Already questionable in run 1, will be quite problematic at for run 2.
- ▶ Much worse at 100 TeV. Overestimation of the reach.
- At the same time, missing other physics opportunities, such as additional states to look for.

Two simple ways of going beyond

- Dark matter in a weak multiplet.
 - Mediators = W/Z/h

- Singlet dark matter + new mediator

DM part of a weak multiplet

- Mediated by W/Z/h.

- Additional charged states.

SUSY as an example

- Not just because we love SUSY.
- SUSY LSP \Rightarrow a set of good examples of more generic WIMP candidates.
 - ▶ Bino ⇔ singlet fermion dark matter
 - Higgsino \Leftrightarrow Doublet. Heavy exotic lepton.
 - $\blacksquare Wino \Leftrightarrow EW Triplet DM$
 - Can have co-annihilation regions

Compressed/degenerate e.g., pure wino, pure Higgsino, Well temper...

Relying on ISR: mono-jet, mono-photon... Soft lepton, displaced tracks

 $\begin{array}{c} \hline \\ C_1, N_2, \dots \\ N_1 \dots \end{array}$

Compressed/degenerate e.g., pure wino, pure Higgsino, Well temper...

Relying on ISR: mono-jet, mono-photon... Soft lepton, displaced tracks

 $\begin{array}{c} \hline \\ C_1, N_2, \dots \\ N_1 \dots \end{array}$

Larger separation in mass spectrum Cascade decay gives multilepton signal. $---- C_1, N_2, ...$

Compressed/degenerate e.g., pure wino, pure Higgsino, Well temper...

Relying on ISR: mono-jet, mono-photon... Soft lepton, displaced tracks

 $\begin{array}{c} \hline \\ C_1, N_2, \dots \\ N_1 \dots \end{array}$

Larger separation in mass spectrum Cascade decay gives multilepton signal. $---- C_1, N_2, ...$

Mono-jet

- Significant step beyond the LHC.

Disappearing track

- Main decay mode $\chi^{\pm} \rightarrow \pi^{\pm} + \chi^{0}$

Charge track ≈ 10(s) cm

- Essentially free of physics background.
- Dominated by p_T mis-measured tracks.
- Very promising reach, much better than mono-jet

Rates (with long tracks)

- Disappearing track, stub, kink...
- Could also be long lived

(Rough) Extrapolation from ATLAS search

- Scale the ATLAS background rates according to hard jet + MET rates.
- Band: varying background estimate by 5 either way.

More from Phil Harris' talk

Do something about Higgsino?

- Depends on detector design
 - How long the track needs to be?
 - Background discrimination?
- Can change mass splitting in extended models.

Higgsino with smaller massing $\frac{c}{M} (h^{\dagger} \tilde{H}_{t}) (h \tilde{H}_{t}) \approx \frac{m_{Z}^{2}}{M}$ plitting

 $\alpha m_z\sim 355~{\rm MeV}$

Splitting can be changed easily from dim-5 operator

$$\frac{c}{M}(h^{\dagger}\tilde{H}_{u})(h\tilde{H}_{d}) \sim \frac{m_{Z}^{2}}{M}$$

Well-tempered, mono-jet + soft lepton

Weaker limit, useful for cross check

Compressed/degenerate e.g., pure wino, pure Higgsino, Well temper...

Relying on ISR: mono-jet, mono-photon... Soft lepton, displaced tracks

C₁, N₂, ... N₁

Wino/Higgsino

- Rate ~ wino production
- BR(N₃ \rightarrow N_{1,2}h) $\approx 1/3$
- ► BR(N₃→N_{1,2}Z) $\simeq 1/3$
- BR(N₃ \rightarrow C₁W) $\simeq 1/3$

Wino/Higgsino

Leading channel: tri-lepton signal, from $N_2 \rightarrow ZN_1$ plus $C_1 \rightarrow WN_1$

Wino/Higgsino

Leading channel: tri-lepton signal, from $N_2 \rightarrow ZN_1$ plus $C_1 \rightarrow WN_1$

Large mass splitting, boosted W/Z. Challenging for letpon ID and isolation.

Cascades

Gori, Jung, LTW, Wells, 1410.6287 Archaya, Bozek, Pongkitivanichkul, Sakurai, 1410.1532

Decay \Rightarrow multi leptons \Rightarrow stronger limits, multi TeV

Food for thought

Boosted W/Zs. High resolution, less stringent lepton isolation.

Food for thought

Boosted W/Zs. High resolution, less stringent lepton isolation.

Compressed spectrum generic. Dedicated detector to id soft lepton, displaced tracks better?

2.5

3.0

3.5

4.0

Food for thought

Boosted W/Zs. High resolution, less stringent lepton isolation.

Compressed spectrum generic. Dedicated detector to id soft lepton, displaced tracks better?

Dark matter signal is impler. Typically no/low jet activities.

Lepton optimized fice tector?

WIMP searches at colliders

100 TeV pp collider will probe TeV WIMP very well.

2. Simplified mediator models

 \Box can be scalar or Z'

🗆 squark like

More from Phil Harris' talk

Possible to discover the mediator first!

An, Ji, LTW, 1202.2894 Assume $g_{Z'} = g_D$

Felix Yu, 2013

In general, the processes involving mediator direct production give strongest limit. Stronger limit come from squark style monojet search. Haipeng An, Hao Zhang, LTW 1308.0592

Conclusions

LHC	VLHC 100 TeV	Lepton collider
M _{DM} ~10 ² s GeV	M _{DM} ~TeV	M _{DM} ~ 0.5 E _{cm} Spin, coupling Is it WIMP?

- Could also link to a possible dark sector.

Conclusion

- The search for WIMP dark matter is largely out of the reach for the LHC.
 - ▶ LHC 14: reach to about a couple hundred GeV.
- 100 TeV pp Collider significantly enhance the reach, a fact of 5-7 enhancement.
- More detailed studies necessary. New ideas needed: more channels, detector design...
- At the same time, it is clear that this should be one of the main motivations for going to a 100 TeV pp collider.

Collider searches

- 2 kinds of contributions for monojet.
- $pp \rightarrow \chi \phi$ gives harder (mono)jet!

Wino, interplay with indirect detection

Cohen, Lisanti, Pierce, Slatyer, 1307.4082

See also Fan, Reece, 1307.4400

- Completely cover the wino parameter space.

Higgsino/Wino

- Rate ~ Higgsino production
- ► BR(N_{2,3}→N₁h) $\approx 1/4$
- BR(N_{2,3} \rightarrow N₁Z) $\approx 1/4$
- ► BR(N_{2,3}→ C_1W) ~ 1/2

Higgsino/bino

- Rate ~ Higgsino production
- ► BR(N_{2,3}→N₁h) $\simeq 1/2$
- ► BR(N_{2,3}→N₁Z) $\approx 1/2$

Example: Wino. Monojet channel

Matthew Low, LTW, 2014

Band: varying systematic error of background, λ , between 1-2%

- A factor of 4-5 enhancement from 14 to 100 TeV.

Recent works on mono-jet for electroweak-inos Schwaller, Zurita, 1312.7350 Baer, Tata, 1401.1162 Han, Kribs, Martin, Menon, 1401.1235

Mono-jet for Higgsino

Co-annihilation, monojet

- Driven by stop/gluino production.
- Impressive reach from mono-jet.