

Architecture of powering and protection systems for high field circuits

same material as in Challenges and limitations of a 100 km magnet string (talk on Wdn)

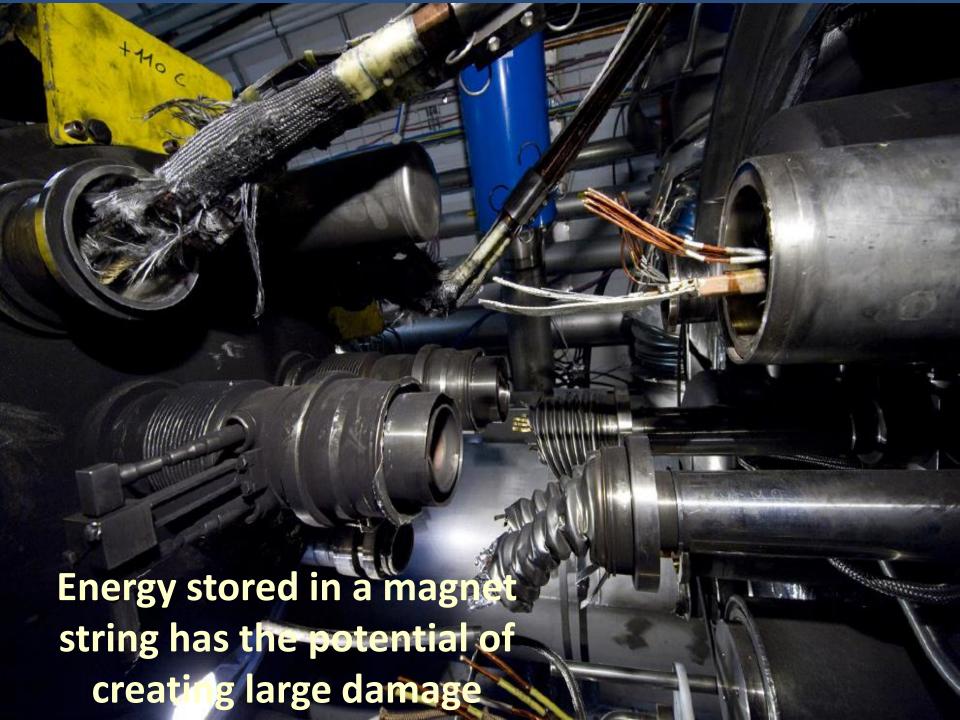
Rüdiger Schmidt and Andrzej Siemko, CERN

FCC week 2015

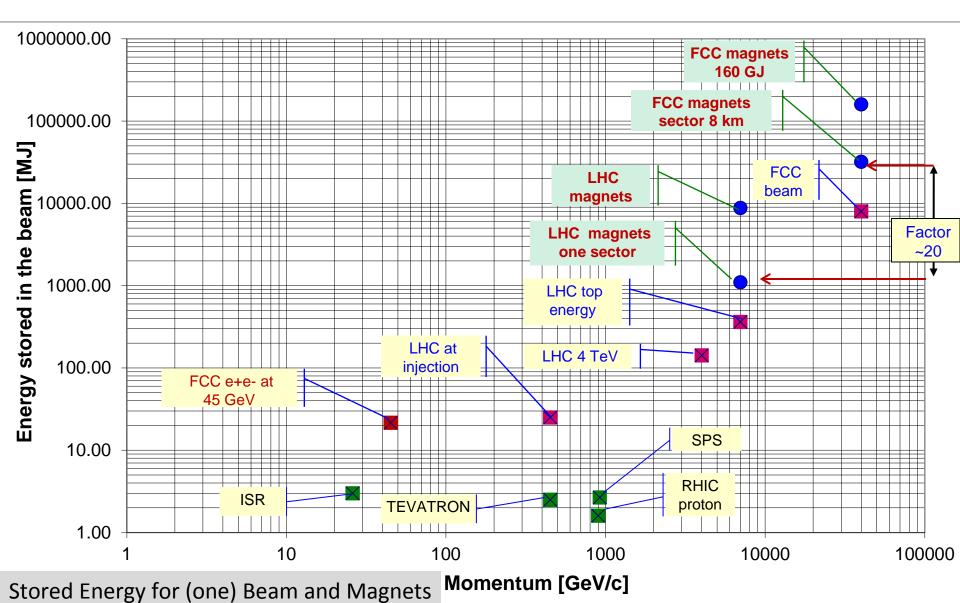
FCC-hh challenges

Stored magnet energy

Stored energy in dipole magnets about 160 GJ


- 16 times higher than LHC, equivalent to nine A380 (560 t) at nominal speed (900 km/h)
- Magnet energy can melt 200 tons of copper

Protection of individual magnets


Protection of electrical circuits to be addressed early on!

Rüdiger Schmidt FCC week 2015 Long Magnet String page 2

Energy versus momentum

Energy stored in superconducting magnets

The part of the energy in the magnet system inside the coil is given by (scaling from LHC):

$$E_{magnets} \sim \frac{4 \times Length \times R^2 \times \pi \times B^2}{\mu_0}$$

Length ∼ 80 km

Radius vacuum chamber R = 25 mm

B = 16 T

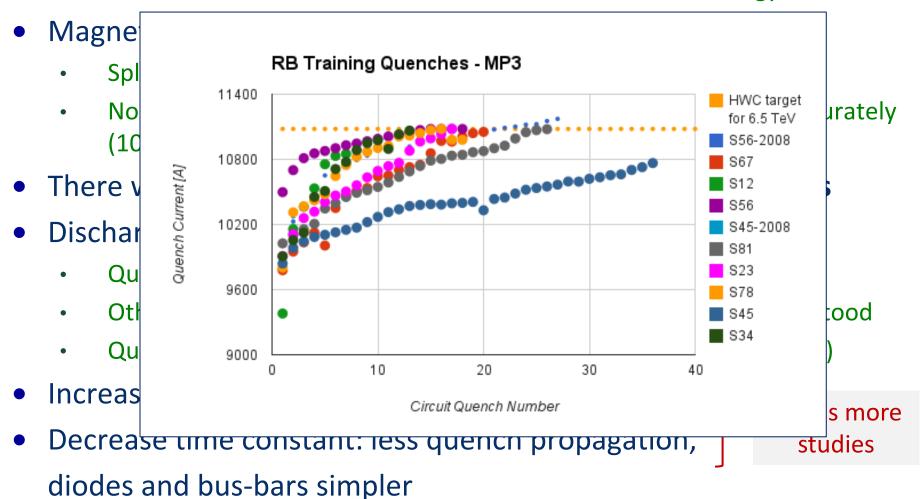
 μ_0 = permeability

 $E_{magnets} \sim 130 \; GJ$

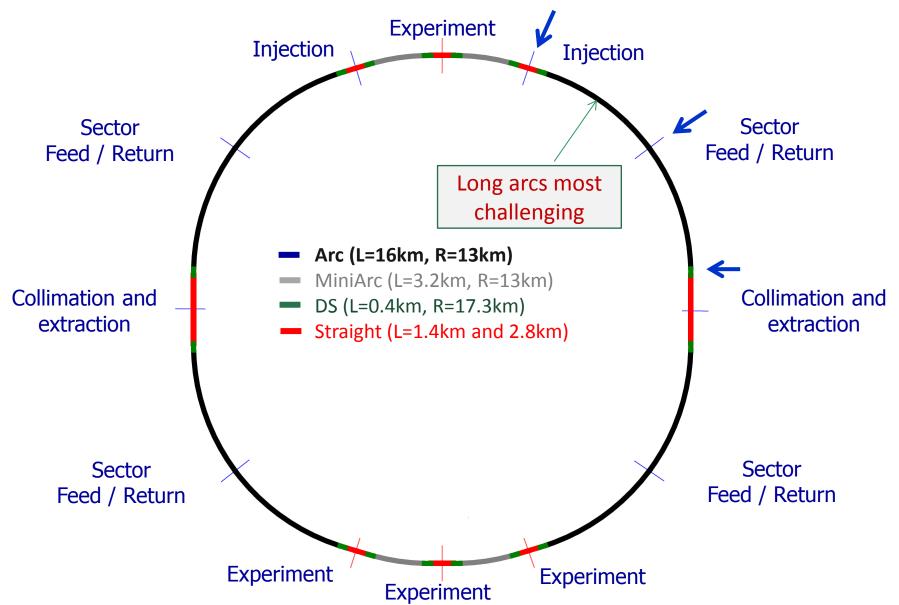
The exact calculation uses the magnet inductance See later

Electrical circuit for superconducting magnets

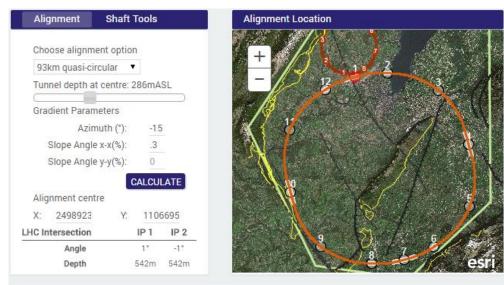
Elements attached to the circuit

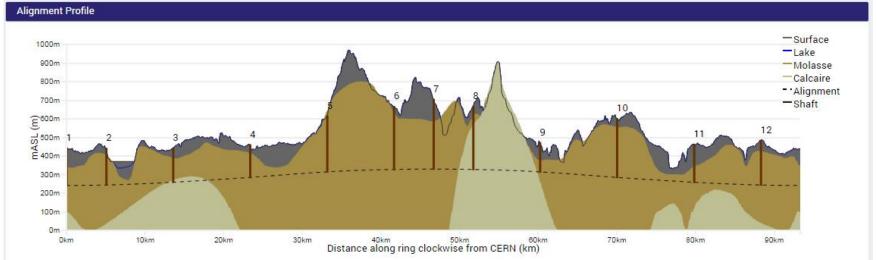

- Magnets
- Power converters
- Warm bus-bars (..might be water cooled)
- Cold bus-bars
- Possibly superconducting links
- Interconnections
- Warm-to-cold transitions (current leads)
- Instrumentation (monitoring and protection)
- Quench heaters and power supplies
- High-current switches
- Resistors for energy extraction
- Interlocks

+cryogenics, vacuum, ...


Some lessons from LHC

- Stored energy in LHC dipole magnets: 9.2 GJ
 - All other circuits contribute with less than 10% of total energy

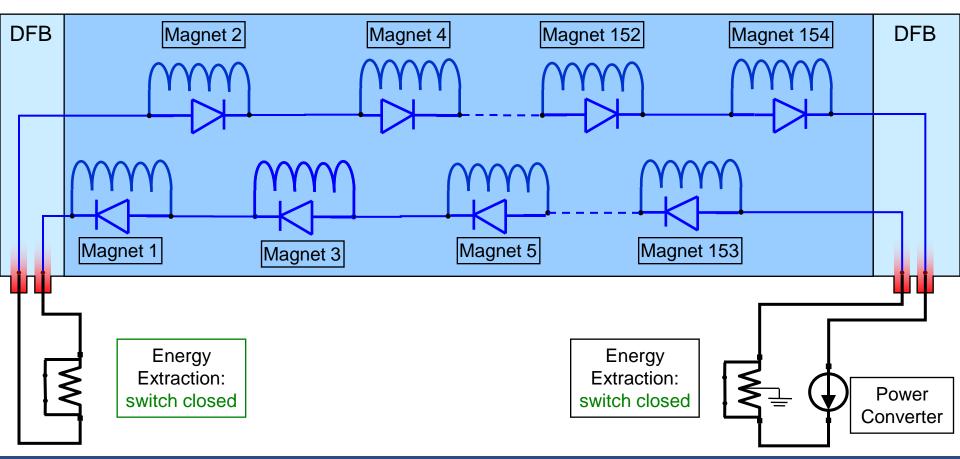

Layout of FCC-hh – defines options



Siting study 93 km perimeter

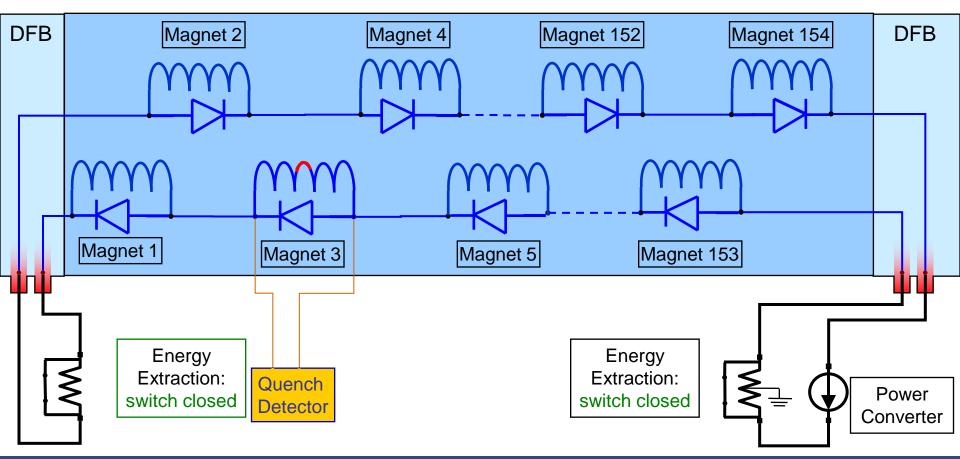
PRELIMINARY

		Shaft D	epth (m	1)		Geology (m)
Shaft	Actual	Min	Mean	Max	Moraine	Molasse	Calcaire
1	200						
2	196	143		211			
3	183	175		194			
4	174	146		178			
5	299		311				
6	336	325	339				
7	374	349	377	412			
8	337						
9	155	131	145	167			
10	315		320				
11	203			204			
12	239	229					
Total	3014	2801	3001	3211	741	2052	247

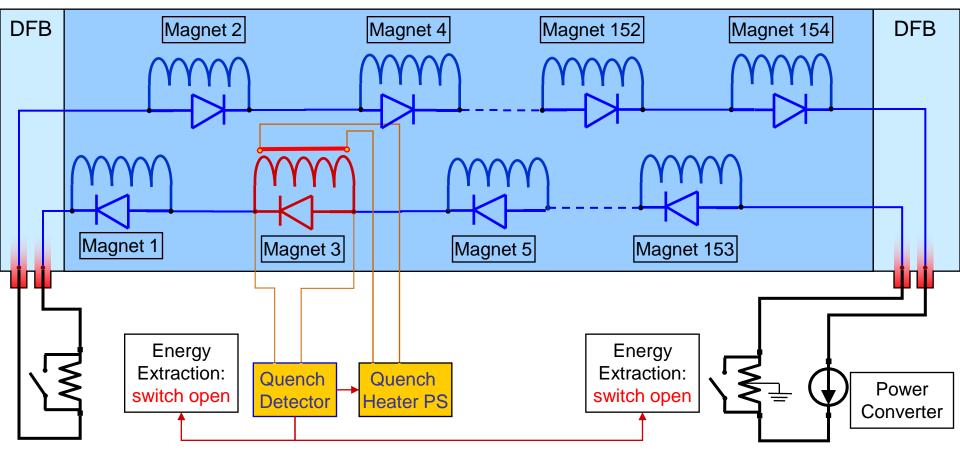


Difficult to imagine more access points

J. Osborne & C. Cook



- Time for energy ramp is about 20-30 min (Energy from the grid)
- Time for regular discharge is about the same (Energy back to the grid)



- Quench in one magnet: Resistance and voltage drop across quenched zone
- Quench is detected: Voltage across magnet exceeds 100 mV

- Quench heaters warm up magnet: energy deposited inside magnet (~200 ms)
- Diode in parallel becomes conducting: current in magnet string through diode
- Resistance is switched into circuit: energy of 153 magnets is dissipated into resistance (time constant of 100 s for main dipole magnets)

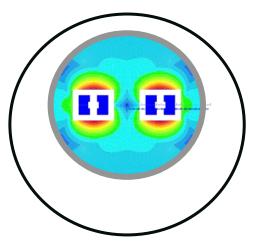
Magnet String in FCC

- To be considered: Inductance of a magnet string
- Ramping magnets needs energy => power converters need to provide electrical power
- **Discharge** after a quench in a given time => voltage

Start with scaling from LHC parameters

FCC magnet string: dipoles

- Consider magnet strings of 8 km one dipole circuit
- Assume magnet lengths as for LHC
- Assume field of 16 T
- Use three versions of magnet parameters (inductance, current)
 - Preliminary magnet parameters that were available (three options,
 D.Schoerling) are assumed
- Assume filling factor slightly better than LHC (length of field / length of sector)
- Calculate number of dipoles in a sector and circuit parameters
- Assume time for ramping the energy
- Calculate Voltage and Power required for ramp
- Assume time for discharge, e.g. after a quench
- Calculate discharge voltage during discharge with two (or more) energy extraction systems


Some parametric studies

Rüdiger Schmidt FCC week 2015 Long Magnet String page 15

Circuit parameter

- Split 16 km sector in two 8 km long powering sectors
- Length of a powering sector 8 km
- Consider dipole magnets

Design by D. Schoerling

	LHC	FCC option 1
	$MB - cos(\theta)$	MB – block
	@ 1.9 K	@ 1.9 K
Magnetic Length [m]	14.343	14.343
Mechanical Length [m]	15.000	15.000
Magnets in one sector	154	474
Total number of magnets	1232	4500
Current at top energy [kA]	11.80	16.26
Field at top energy [T]	8.330	16.0
Inductance [H/m]	0.0075	0.0190
Inductance [H] per magnet	0.108	0.273
Energy in one magnet [MJ]	7.52	36.03
Inductance in one sector [H]	16.6	129.2
Energy in one sector [MJ]	1157.9	17079.4
Energy in accelerator [MJ]	9263.4	162112.8

Ramping the dipole string

	LHC	FCC option 1	FCC option 1	FCC option 1
Voltage in ramp [V]	163.5	1750.7	2040.0	3391.5
Max power for ramping [MW]	1.93	28.47	45.90	29.00
Ramp time [min]	20	20	20	20
Max power for ramp all machine [MW]	15.4	270.2	435.7	275.2

- In one powering sector: 474 dipoles
- Ramping time of 20 min is assumed
- High voltage during ramping (magnets and all associated instrumentation must cope with it)
- Very high power to be provided by power converters during ramping

Discharge of the dipole string

 Option 1 as LHC: Discharge time of 100 s, two energy extraction systems, one at each end of the string

	LHC	FCC option 1	FCC option 1	FCC option 1
Discharge time [s]	100	100	100	100
Number of EE systems	2	2	2	2
Total resistance required for discharge [Ohm]	0.166	1.292	1.088	4.760
Total Voltage across resistance [V]	1962.6	21007.9	24480.0	40698.0
dIdt at the start of discharge [A/s]	118.0	162.6	225.0	85.5
Voltage for discharge [V] - 2 EE systems	981.3	10504.0	12240.0	20349.0

 Option 2 as LHC: Discharge time of 20 s, two energy extraction systems, one at each end of the string

	LHC	FCC option 1	FCC option 1	FCC option 1
Discharge time [s]	100	20	20	20
Number of EE systems	2	2	2	2
Total resistance required for discharge [Ohm]	0.166	6.460	5.440	23.800
Total Voltage across resistance [V]	1962.6	105039.6	122400.0	203490.0
dIdt at the start of discharge [A/s]	118.0	813.0	1125.0	427.5
Voltage for discharge [V] - 2 EE systems	981.3	52519.8	61200.0	101745.0

Discharge of the dipole string

- Option 3: Discharge time of 20 s, many energy extraction systems (in this example 100)
- Option 4: Increased time constant (40 s = 50 EE systems)

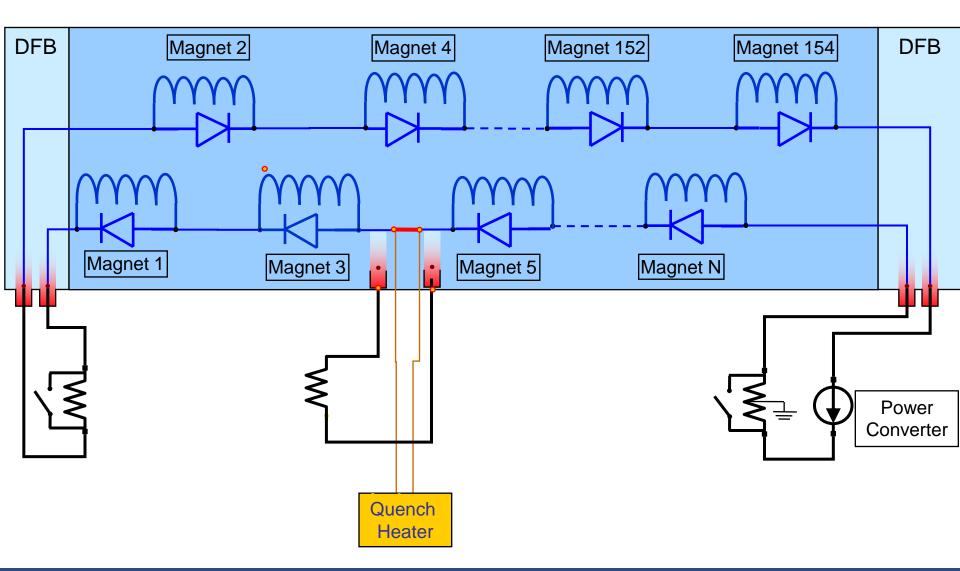
	LHC	FCC option 1	FCC option 1	FCC option 1
Discharge time [s]	100	20	20	20
Number of EE systems	2	100	100	100
Total resistance required for discharge [Ohm]	0.166	6.460	5.440	23.800
Total Voltage across resistance [V]	1962.6	105039.6	122400.0	203490.0
dIdt at the start of discharge [A/s]	118.0	813.0	1125.0	427.5
Voltage for discharge [V] - 2 EE systems	981.3	1050.4	1224.0	2034.9
	LHC	FCC option 1	FCC option 1	FCC option 1
Discharge time [s]	100	40	40	40
Number of EE systems	2	50	50	50
Total resistance required for discharge [Ohm]	0.166	3.230	2.720	11.900
Total Voltage across resistance [V]	1962.6	52519.8	61200.0	101745.0
dIdt at the start of discharge [A/s]	118.0	406.5	562.5	213.8
Voltage for discharge [V] - 2 EE systems	981.3	1050.4	1224.0	2034.9

FCC week 2015 Long Magnet String page 19

Discharge of the dipole string

 Option 5: increase time constant from 100 s to 360 s to reduce voltage

	LHC	FCC option 1	FCC option 1	FCC option 1
Discharge time [s]	100	360	360	360
Number of EE systems	2	2	2	2
Total resistance required for discharge [Ohm]	0.166	0.359	0.302	1.322
Total Voltage across resistance [V]	1962.6	5835.5	6800.0	11305.0
dIdt at the start of discharge [A/s]	118.0	45.2	62.5	23.8
Voltage for discharge [V] - 2 EE systems	981.3	2917.8	3400.0	5652.5


These values are approximate, and depend on several parameters, but will not change by more than, say, some 10%

Some parameters to be explored....

- Best to have shorter powering sectors... civil engineering?
- Reduction of ramp rate reduces power... but 20 min is already long
- Powering each dipole aperture separately (gain a factor of 2, more bus-bars required)
- Fast extraction of energy by many energy extraction points
 - Limited by maximum current decay that is permitted without quenching magnets (possibly 1000 A/s)
 - Assume maximum voltage of about 1 kV
- Alternative to mechanical switches as in LHC: are superconducting switches possible?
 - Stretch of sc cable heated by a quench heater, becomes conducting
 - In parallel, resistor outside the cryostat with lower resistance
- Can we consider cold resistors?

A long magnet string to be discharged...

One example

- Needs current leads that carry current during time for extraction
- Assuming voltage across extraction resistor of 1 kV
- The value of one resistor is 62.5 mOhm
- Assuming a time constant of 20 s, 100 of such resistors are required
- Assuming a time constant of 20 s and a current of 16 kA, a busbar of about 120 mm2 is required to connect an extraction resistor
- Acceptable for cryogenic system?
- Volume of dump resistors to be considered

Providing the power

Rüdiger Schmidt FCC week 2015 Long Magnet String page 24

Energy in the FCC Magnets: 600 Teslas

Is there a way to store and recuperate the energy of the magnets using batteries?

Rüdiger Schmidt FCC week 2015 Long Magnet String page 25

As for LHC: lot of electronics in the tunnel ??

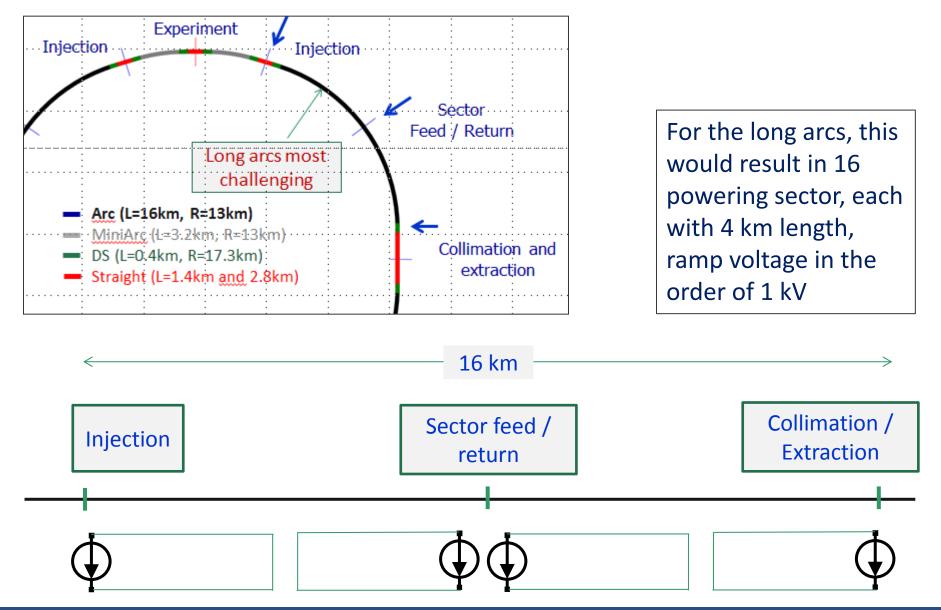
- FCC: Quench detection system requires several 10000 electronics cards and ~20000 quench heater power supplies
- Power supplies for orbit corrector magnets
- Beam loss monitors and their front-end electronics.
- Equipment for vacuum control
- Equipment for cryogenics control

Radiation, limitation in design, long access time, safety of personnel in tunnel imposes restrictions, ...

As little electronics as possible in the tunnel

Ideas to be looked at

- Excellent experience with powering of many circuits via long cold bus-bars (all 600 A circuits) in so-called N-line and other lines
- Orbit corrector magnet supplied by sc cables in the cold
 - Powering of orbit power converters via type of "N-line"
- Quench heater power supplies / CLIQ system: can the High Voltage provided by a central HV supply and distributed to the magnets?
 - Local switches still required
- Minimum complexity of front end electronics: communication from service computers to front-end electronics in tunnel will be critical -> R&D required (also for HL-LHC)
 - Excellent experience with signal transmission via optical fibres
 - Experiments are thinking about wireless communication
- What to do with electronics for vacuum and cryogenics?



- Availability: as far as possible, redundant systems should be used
- Availability: no single failure in an electronics component or in a cable connection should lead to a beam dump
- For protection systems: 2003 voting to be considered (quench detection system, interlocks, beam loss monitors)
- For other system, redundancy / hot spares
 - To be designed such that beam survives switching to hot spare
 - Monitoring of failed unit required
 - Repair during maintenance period
- Longer sectors: longer intervention time, magnet training takes longer in case it is required

Reducing length of powering sector to 4 km?

Some questions

- Is it possible to reduce the length of a magnet string?
 - Reduction by a factor of 2 by powering an 8 km long sector from both sides?
 - Further reduction?
- What ramp time should we consider?
- What voltage for the magnets is acceptable?
- Are sc switches possible?
- What about the load of current leads (e.g. 120 mm2) to the cryogenics system?

- Magnets with a field of 16 T magnet are very challenging
- The FCC powering and protection system to safely power a string with such magnets is similarly challenging
- Simple scaling from LHC will result in a system that is too expensive, and cannot be efficiently operated
- Shorter powering sectors are preferred
- For the system to ensure safe and efficient powering of the magnets, new ideas and R&D on new technologies is required!

Lessons Learned [MJS]

Mike Syphers Tuesday

- Modularity in the optics design and layout was VERY important; "saved the day" several times
- A certain amount of "free space" in the arcs will be very important — diagnostics, collimators, other?
 - avoid MANY km of solid cryostat

To many colleagues who were involved in LHC powering over the years

Special thanks to....

- Arjan Verweij
- Luca Bottura
- Daniel Schoerling