Emittance Evolution in Hadron Colliders

Valeri Lebedev Fermilab

> FCC Week 2015 March 22-27, 2015 Washington, DC

1. Luminosity Evolution Model

- The model was developed to describe Tevatron stores
- It accounts for major beam heating and particle loss mechanisms
 - Phenomena taken into account
 - Interaction with residual gas
 - Emittance growth due to multiple electromagnetic scattering
 - $_{\odot}$ Particle loss due to single nuclear and electromagnetic interaction
 - Particle interaction in IPs (proportional to the luminosity)
 - Elastic + inelastic scattering
 - IBS
- $\circ\,$ Multiple momentum spread and emittance growth
- Single jump out of RF bucket
- Bunch lengthening due to RF noise
 - Associated particle loss from the bucket
- LHC and FCC specific
 - $\circ\,$ SR damping and diffusion
 - $_{\odot}$ Emittance growth due to noise of transverse damper and e.-m. noise
 - $_{\rm O}$ Orbit length variation due to micro-seism
- Phenomena ignored in the model: Beam-beam effects, Ring non-linearity, Diffusion amplification by coherent effects (typically small corrections)

Luminosity Evolution Model (Tevatron)

Luminosity Evolution Model (LHC: 2*3.5 TeV)

Growth rate estimates

$$\begin{split} \tau_{\parallel}^{-1} &= \frac{1}{\theta_{\parallel}^{2}} \frac{d}{dt} \left(\theta_{\parallel}^{2} \right) \equiv \frac{d}{dt} \left(\frac{\overline{p_{\parallel}^{2}}}{p} \right) \approx \frac{r_{p}^{2} c N L_{C} Q^{1/2}}{8 \gamma^{3/2} \varepsilon_{n}^{3/2} R_{0}^{1/2} \sigma_{s} \theta_{\parallel}^{2}}, \quad \beta_{x} \approx \beta_{y} \approx \beta \equiv \frac{R_{0}}{Q} \\ \tau_{x}^{-1} &= \frac{1}{\varepsilon_{x}} \frac{d\varepsilon_{x}}{dt} \approx \frac{r_{p}^{2} c N L_{C} R_{0}^{3/2}}{8 \gamma^{1/2} \varepsilon_{n}^{5/2} Q^{5/2} \sigma_{s}}, \qquad \sigma_{x} \approx \sigma_{y} \approx \sqrt{\varepsilon \beta} \\ \tau_{y}^{-1} &= \frac{1}{\varepsilon_{y}} \frac{d\varepsilon_{y}}{dt} \approx 0, \qquad \varepsilon_{n} = \gamma \varepsilon \end{split}$$

- Increase of $\tau_{||}$ for LHC is mainly related with increase of γ and R₀: $\infty \gamma^2$
- Increase of τ_x for LHC is mainly related with increase of betatron tune, Q

	$\tau_{ }$ [hour]	τ_x [hour]
Tevatron (prot)	12	15
LHC (3.5 TeV)	20	32
LHC (6.5 TeV)	50	80
FCC (50 TeV)	75	60

- IBS is a major mechanism of the emittance growth (luminosity loss) for Tevatron
- It plays comparatively small role for higher energy machines

<u>IBS in Tevatron</u>

Fig. 6.12 Vertical emittance growth rates (rms, norm.) of proton bunches vs the IBS factor F_{IBS} (*left*); the rms bunch length growth rates vs the IBS factor F_{IBS} (*right*) [20]

 \perp emittance growth in Tevatron has a contribution additional to IBS

- It significantly exceeds $d\epsilon/dt$ driven by residual gas scattering
- Present understanding noise driven growth
 - Schottky monitor signal (~20 MHz) exceeds actual Schottky signal by about an order of magnitude

At injection energy the "residual" emittance growth is dominated by multiple scattering on the residual gas ($d\epsilon/dt_{gas} \propto 1/\gamma^2$; $d\epsilon/dt_{noise}$ ~const)

Emittance Growth due to Transverse Noise

$$\frac{d\varepsilon}{dt} = \frac{16\pi^2 \Delta v^2}{g^2} \left(\left(\frac{d\varepsilon}{dt} \right)_0 + \frac{f_0 g^2}{2\beta_{BPM}} \overline{x_{BPM}}^2 \right)$$
$$\left(\frac{d\varepsilon_{x,y}}{dt} \right)_0 = \beta_{x,y} \left(\frac{el}{Pc} \right)^2 \frac{\omega_0^2}{4\pi} \sum_{n=-\infty}^{\infty} S_{\delta B} \left((\nu - n) \omega_0 \right)$$

The growth of feedback system gain, g, does not affect $d\epsilon/dt$

For a collider the tune spread is dominated by beam-beam tune shift

$$\sqrt{\Delta v^2} \simeq 0.2 \xi_{tot}$$

- Observed emittance growth for the LHC fill 1852 corresponds to the effective noise of ~0.2 μ m for 2 systems (H&V)
- Required noise in magnetic field of single dipole for the FCC (no damper, white noise):
 - $\Delta B/B \sim 1.5 \cdot 10^{-9}$ for the 2 hour emittance growth time
 - Spectral density of $\triangle B/B$ fluctuations at ~1 kHz is unknown
 - Study is required

Required BPM resolution: 0.5 μm for 2 hour emittance growth time

Close to what has been achieved for the LHC (SR helps)

FCC versus LHC

Next hadron collider main features

- ~1.5 times larger magnetic field & ~7 times larger energy
 ⇒ SR damping time: 1.5²×7≈15 times faster or ~1 hour
 - \Rightarrow Revolution frequency 7/1.5 \approx 5 times smaller
 - \Rightarrow Spectral density of seismic noise $\propto 1/f^{3.5} \Rightarrow \sim 200$ times larger
- Noise driven emittance growth is not a negligible problem for the LHC
 - It is suppressed by low noise transverse dampers (together with instabilities)
 - If not properly addressed the noise is going to be a major source of emittance growth

If noise is too large the

emittance growth cannot be suppressed to the required level FRS requirements, mech. design & experimental studies

<u>RF Noise</u>

At small amplitude the bunch lengthening due to RF phase noise is determined by its spectral density at synchrotron frequency,

$$\frac{d\left(\sigma_{\varphi}^{2}\right)}{dt}\bigg|_{RF} = \pi\Omega_{s}^{2}\sum_{n=-\infty}^{\infty}\mathsf{P}_{\varphi}\left(\Omega_{s} + nf_{0}\right)$$

where the spectral density of RF phase noise is normalized as

$$\overline{\phi_{RF}}^{2} = \int_{-\infty}^{\infty} \mathbf{P}_{\phi}(\omega) d\omega$$

For the white noise:

$$\frac{d\left(\sigma_{\varphi}^{2}\right)}{dt}\bigg|_{RF} = \frac{f_{0}}{2}\Omega_{s}^{2}\overline{\delta\phi^{2}}$$

For Tevatron the measured $P_{\phi}(\omega)$ and bunch lengthening are in decent agreement:

$$P_{\phi f}\left(\Omega_{s}/2\pi\right) = 4\pi P_{\phi}\left(\Omega_{s}\right) \approx 6 \cdot 10^{-12} \quad \text{rad}^{2}/\text{Hz} \quad \Leftrightarrow \quad \frac{d\left(\sigma_{\phi}^{2}\right)}{dt} \right|_{RF} \approx 16 \quad \text{mrad}/\sqrt{\text{hour}}$$

- For the FCC the required turn-by-turn rms phase stability in the absence of damping (f_s =2.5 Hz): ~2 deg (not a problem, SR helps)
 - Corresponding requirements to path lengthening due to microseism at f_s is not a problem: $\delta L < 0.5$ cm (rms)

Emittance Evolution in Hadron Colliders, Valeri Lebedev, FCC Week 2015, March 22-27, 2015

<u>Summary</u>

- Noise in the magnetic field of dipoles can drive unacceptably large emittance growth
 - Experimental measurements of noise spectral density in magnetic field of dipoles are required
 - Engineering, including civil construction, has to be aimed it reduction of mechanical vibrations and noise of power supplies at the betatron sidebands (frequency of the lowest one is ~1 kHz)
 - The liner should not have mechanical frequencies at betatron sidebands
- Requirements to the noise of transverse damper are similar to those obtained at the LHC
- Transverse noise of the damper and noise of magnetic field in dipoles have to be included in the luminosity evolution model
- Requirements to the noise of longitudinal damper are similar to those obtained at the LHC

Backup Slides

<u>Residual Gas Scattering</u>

Beam life time

$$\tau_{scat}^{-1} = \frac{2\pi c r_p^2}{\gamma^2 \beta^3} \left(\sum_i n_i Z_i (Z_i + 1) \right) \left(\frac{\overline{\beta_x}}{\varepsilon_{mx}} + \frac{\overline{\beta_y}}{\varepsilon_{my}} \right) + \sum_i n_i \sigma_i c \beta$$

only second addend is important. It has weak dependence on energy

- Typical lifetimes
 - Tevatron: 300 600 hours
 - LHC > 1000 hours (much better average vacuum)
 - FCC should be close to Tevatron (SR will affect vacuum)

Emittance growth time

$$\frac{1}{\varepsilon_{x,y}}\frac{d\varepsilon_{x,y}}{dt} = \frac{2\pi cr_p^2}{\gamma\beta^2\varepsilon_{n_{x,y}}} \left(\sum_i n_i Z_i \left(Z_i + 1\right) L_{C_i}\right) \overline{\beta_{x,y}}$$

 $\beta_{\textbf{x},\textbf{y}} \propto \gamma$ => weak dependence on energy

- Typical growth rate times
 - Tevatron: 300 600 hours
 - LHC >> 1000 hours (much better average vacuum)
 - FCC should be close to Tevatron (SR will affect vacuum)

Bunch lengthening due to RF phase noise

 $\ddot{x} + \Omega_s^2 \sin(x - \psi(t)) = 0 \implies \ddot{x} + \Omega_s^2 \sin(x) = \Omega_s^2 \cos(x)\psi(t)$

Action -
$$I = \frac{1}{2\pi} \oint p dx$$
 Frequency - $\omega \equiv \omega(I) = 2\pi \left(\oint \frac{dx}{p} \right)^{-1}$

Introduce the diffusion coefficient using the following form of diff. eq.

$$\frac{\partial f}{\partial t} = \frac{1}{2} \frac{\partial}{\partial I} \left(I \frac{D(I)}{\omega(I)} \frac{\partial f}{\partial I} \right)$$

where diffusion coefficient is

$$D(I) = \frac{\omega}{I} \frac{d}{dt} \overline{\delta I^2} = 2\pi \Omega_s^2 \sum_{n=0}^{\infty} C_n(I) P(n\omega(I)) \quad ,$$

and the spectral density is normalized a $\overline{\psi(t)^2} = \int_{0}^{\infty} P(\omega) d\omega \quad .$

For the white noise, $P(\omega) = P_0$, it yields

$$D(I) = 2\pi \Omega_s^2 P_0 C_\infty(I) \text{ where } C_\infty(I) = \sum_{n=0}^{\infty} C_n(I)$$

For the LHC the effect of RF noise is increased near bucket boundary due to bucket nonlinearity (spectral density goes to high f)

Direct measurement of RF noise performed by John Reid

- Microphonics
 - cavity mechanical
 resonances are at
 synchrotron
 frequency
 ➢ Phase feedback
 - suppresses microphonics by more than 20 Db
- Longitudinal damper is too noisy

Damper "white" noise hides mechanical resonances