FCC Week 2015 (Washington) 26th March

EW precision measurements summary

Roberto Tenchini INFN Pisa

See also Doreen Wackeroth's talk on Tuesday

Acknowledgements: Patrizia Azzi, Martin Beneke, Alain Blondel, Roman Kogler, Michelangelo Mangano, Fulvio Piccinini

what are we up to ?

Time evolution of bounds on the SM Higgs boson mass from precision measurements

(courtesy of Roman Kogler)

Preparing next microscope

- Developing in important tools for indirect information on new physics:
 - discovery can be better prepared if we know where to look
 - once a new state is discovered need a framework to build the full picture (e.g. test the New Standard Model, give indications where other states could be)

The current experimental inputs to EW fits

I will briefly discuss some of the challenges for FCC for the (pseudo)-observables on the right table (which typically means work to be done to exploit FCC potential)

The goals in precision for FCC-ee are given in JHEP 01 (2014) 164

$M_H \; [\text{GeV}]^{(\circ)}$	125.14 ± 0.24	LHC
M_W [GeV]	80.385 ± 0.015	Том
$\Gamma_W [{\rm GeV}]$	2.085 ± 0.042	164.
M_Z [GeV]	91.1875 ± 0.0021	
$\Gamma_Z [\text{GeV}]$	2.4952 ± 0.0023	
$\sigma_{\rm had}^0$ [nb]	41.540 ± 0.037	LEP
R^0_ℓ	20.767 ± 0.025	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
A_ℓ (*)	0.1499 ± 0.0018	SLD
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	-
A_c	0.670 ± 0.027	
A_b	0.923 ± 0.020	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	. I FP
R_c^0	0.1721 ± 0.0030	
R_b^0	0.21629 ± 0.00066	11
$\overline{\overline{m}_c} [\text{GeV}]$	$1.27^{+0.07}_{-0.11}$	
$\overline{m}_b [{\rm GeV}]$	$4.20^{+0.17}_{-0.07}$	
$m_t \; [\text{GeV}]$	173.34 ± 0.76	Tev.+LHC
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	2757 ± 10	-

Z lineshape for high precision M_Z and Γ_Z

- Measure the Z lineshape by accumulating 10¹² Z bosons in a energy scan
- At LEP reached ~2·10⁻⁵ and gained a lot of experience on centre-of-mass energy determination with resonant depolarization
- Could potentially reach ~10⁻⁶ (100 keV on M_Z and Γ_Z)
- Improve the knowledge of other observables, e.g. R_1 and related $\alpha_s(M_Z)$ determination.

The key: beam energy calibration

- Resonant depolarization
 - use natural transverse polarization
 - add horizontal B field and Thomas precession
- The depolarizing resonance was very narrow at LEP (~ 100 keV), however the final systematic uncertainty was 1.5 MeV because of transport from polarization runs
- At FCC-ee continuous calibration with dedicated bunches

The Z lineshape

- The lineshape is highly asymmetric because of radiative effects
- At LEP the cross section was convolved with a radiator function H(s',s)

$$\sigma_{f\bar{f}}(s) = \int_{4m_f^2}^s ds' H(s,s') \hat{\sigma}_{f\bar{f}}(s')$$

• Current calculations gives a precision of 0.01%, sufficient for the 0.1% requirements at LEP times

 $e^+e^- \rightarrow \mu^+\mu^$ σ(nb) 2 1.75 1.5 1.25 0.75 0.5 0.25 92 93 89 90 88 91 94 Ecm (GeV)

Radiation function currently calculated up to $O(\alpha^3)$

Uncertainty on the ISR deconvolution

 obtained through the comparison of additive and factorized form of the radiator function

	LEP 1 energy in GeV					
	$M_Z - 3$	$M_Z - 1$	M_Z	$M_{Z} + 1$	$M_{Z} + 3$	
$10^4 \times (\text{fact/add-1})$						
σ_{μ}	0.44	0.63	0.61	0.72	0.49	
	0.88	0.63	0.68	0.72	0.49	
$\sigma_{ m had}$	0.58	0.58	0.64	0.73	0.59	
	0.61	0.62	0.67	0.76	0.62	
fact-add [pb]						
σ_{μ}	0.01	0.03	0.09	0.05	0.02	
	0.02	0.03	0.10	0.05	0.02	
$\sigma_{ m had}$	0.26	0.56	1.95	1.04	0.48	
	0.27	0.60	2.04	1.08	0.51	
$10^5 \times \text{(fact-add)}$						
A^{μ}_{FB}	1.00	1.00	0.00	0.00	-1.00	
F D	-4.00	-2.00	0.00	1.00	1.00	

- The level of agreement between TOPAZ0 and ZFITTER around the Z peak is below the 0.01% level → analysis at the 0.1% level on the derived observables are robust
- passing from 0.1% to 0.01% (or even more) precision requires an improvement of the deconvolution process
 F. Piccinini (INFN)
 TLEP8
 28 October 2014
 7/15

Lineshape: reduced cross sections

From ISR deconvolution the reduced cross section is obtained, for hadrons and for each lepton species

$$\sigma_{f\bar{f}}(s) = \sigma_{f\bar{f}}^{peak}(s) \frac{s\Gamma_Z^2}{(s - M_Z^2)^2 + (\frac{s\Gamma_Z}{M_Z})^2} + "(\gamma - Z)" + "\gamma^2"$$

$$\sigma_{f\bar{f}}^{peak}(s) = \frac{12\pi}{M_Z^2} \frac{\Gamma_e \Gamma_\mu}{\Gamma_Z^2}$$

Interference term: zero at pole, in the standard
LEP analysis is computed (*), alternatively can
be measured off peak (S-matrix model
independent approach).
(*) dependence on SM parameters less than 0.1%

Photon exchange, a few percent at the Z pole

Lineshape at FCC-ee: requires model independent approach

A. Leike, T. Riemann, J. Rose, PLB273 (1991) 513

 General parameterization in terms of exchange of a massless and a massive vector boson

$$\sigma_T(s) = \frac{4}{3}\pi\alpha^2 \int \frac{ds'}{s} \left[\frac{r^{\gamma}}{s} + \frac{sr + (s - M_Z^2)j}{(s - M_Z^2)^2 + M_Z^2\Gamma_Z^2} \right] \rho_{ini} \left(\frac{s'}{s} \right)$$

- Leaves the contributions of Z exchange (r) and Z-γ interference (j) free
- Off-peak points greatly improve the measurement, adding LEP2 cross sections the M_Z precision obtained at LEP1 was recovered

Precision cross section measurements: acceptance issues

- At LEP acceptance effects were at 10⁻⁴ level, sufficient for cross sections measured at the 10⁻³ level. At FCC-ee we have to exploit a statistical uncertainty at 10⁻⁵ level... !
- The main effects were due to track losses, angle mismeasurements and knowledge of boundaries.

Table 13. Exclusive $\mu^+\mu^-$ selection: examples of relative systematic uncertainties (in %) for the 1994 (1995) peak points

Source	$\Delta\sigma/\sigma$ (%)
Acceptance	0.05
Momentum calibration	0.006(0.009)
Momentum resolution	0.005
Photon energy	0.05
Radiative events	0.05
Muon identification	$\simeq 0.001 \ (0.02)$
Monte Carlo statistics	0.06
Total	0.10 (0.11)

Example from ALEPH, EPJC 14 (2000) 1

which requirements on the detector mechanical position?

Again on acceptance issues

- At LEP the only detectors for which the mechanical precision was relevant were the luminometers.
- The inner edge of the detector (the relevant boundary) was known at the level of $20 \ \mu m$
- The beam displacement (vertical and horizontal) was made in-effective by choosing two different fiducial regions (loose and tight) and alternating them in the two sides (*)
- At FCC-ee we could use similar methods for other cross sections measurements (e.g. different and alternating forward and backward fiducial regions), but still need to identify and know well the relevant boundaries.

(*) G. Barbiellini, M. Conversi et al. Atti Accad. Naz. Lincei 44 (1968) 233

TeraZ: final word on Asymmetries

- Long standing difference between Alr and A_{FB}(b), it must be sorted out
- measurement of Alr with long. polarized beams
- direct measurement of the b couplings (again need long. polarization)
- Could potentially reach $\sim 10^{-6}$ on sin2theta
- What can be done without long polarization ? (next slides)

Quick reminder on asymmetries

• Z boson decay to $f\bar{f}$: 3 observables from the direction and decay of the outgoing fermion

• Additional asymmetries with polarization of initial state :

$$A_{LR} = \frac{\sigma_{l} - \sigma_{r}}{\sigma_{tot}} = A_{e}$$

$$A_{FB}^{\text{pol}} = \frac{\sigma_{F,l} - \sigma_{B,l} - \sigma_{F,r} + \sigma_{B,r}}{\sigma_{tot}} = \frac{3}{4}A_{f}$$

At FCC-ee can sizably improve b asymmetry

- Two techniques
 - use semileptonic b decays
 - use weighted charge of particles in the hemisphere
- Very different systematic effects
- LEP final combination statistically dominated

	[∆] AFB(b)	
STATISTICS	0.00156	
UNCORRELATED SYSTEMATIC	0.00061	
QCD CORRECTION	0.00030 -	
LIGHT QUARK FRAGMENTATION	0.00013	
SEMILEPTONIC DECAYS MODELLING	0.00013	
CHARM FRAGMENTATION	0.00006	
BOTTOM FRAGMENTATION	0.00003	
TOTAL SYSTEMATIC ERROR	0.00073	

Can be reduced with improved calculations and proper choices of analysis methods

tau polarization

- •Polarization measurement as a function of the production angle allows A_e to be separated from A_r
- \bullet Universality test and measurement of $sin^2\theta_W$
- LEP combination was (again) statistically dominated

$$P_{\tau}(\cos\theta) = \frac{A_{pol}(1+\cos^2\theta) + \frac{8}{3}A_{pol}^{FB}\cos\theta}{(1+\cos^2\theta) + \frac{8}{3}A_{FB}\cos\theta}$$

Again on FB asymmetries

- Also in this case a model independent approach (S-matrix) is desirable, the energy dependence was available, but was not tried at LEP.
 - trade statistical power for reduced theoretical assumptions
- A_{FB}(μ⁺μ⁻) or A_{FB}(τ⁺τ⁻) can also be considerably improved (currently largely dominated by statistics). A_{FB}(e⁺e⁻) more difficult because of t-channel

Measuring the couplings

• Requires measurement of asymmetry and width (or width ratio as R_b)

$$R_{b} = \frac{\Gamma(Z \rightarrow b\overline{b})}{\Gamma_{had}}$$

AFB(b) = $\frac{O_F - O_B}{O_{tot}} = \frac{3}{4}A_eA_b$ (LEP)

 $A_b = A_{FB}^{PO}(b) = 0.921 \pm 0.021 (SLC)$

R_b = 0.21646 ± 0.00065 (LEP + SLC) $\longrightarrow (g_{Af})^2 + (g_{Vf})^2$

Improving on R_b

- Very sensitive to rad. vertex corrections due to new particles (e.g. stops or charginos)
- Important to sort out LEP b-couplings issue
- Measurement exploits the presence of two b hadrons and b-tagging.
- Independent from b-tagging efficiency, but not from hemisphere correlations
- Higher b-tagging performance (better vertex detectors) helps in reducing the correlation
- Correlations sources should be identified and studied with data (done at LEP)

160 GeV: Measurement of the W mass

- Here the Tevatron goal is 10 MeV and LHC goal 5 MeV. Will depend a lot on improvements of PDF.
- Perform a precise measurement from the WW threshold scan Could potentially reach ~ 0.5 MeV if resonant depolarization works at 80 GeV.

Also revisit the LEP2 method of direct reconstruction (there is room for improvement, e.g. beam energy, large statistics on semileptonic events, etc.)

The W mass from threshold scan

- Experimentally very clean, efficiencies and backgrounds from LEP →
 - μ⁺μ⁻ eff~70% bkg 10%
 qq eff~90% bkg 20%
- The issue here is the theoretical description of the turn on shape (see talk of Doreen on Tuesday and comments on next slide)

Fig. 4. Measurements of the W-pair production cross section at ten CM energies, compared to the Standard Model predictions from YFSWW3 and RacoonWW for $m_{\rm W}=80.35\,{\rm GeV}/c^2$

Four-fermion production near WW threshold

- Theoretical calculations must refer to a final state of decayed W bosons and include non-resonant and off-shell effects.
- Roughly 1% error in the theoretical prediction of the total cross section results in a 15 MeV error on the mW measurement.
 - for 0.1% precision need to go to NNLO, dominant contribution calculated [arXiv:0807.0102], need to progress on this path
 - improvement of the presently available treatment of ISR [arXiv:0707.0773] is also required (it can be solved, but requires work)

[comments from M. Beneke]

Improve W Branching Ratios with FCC-ee

Final results from LEP:

• combine electron and muon BR and compare to tau ... a forgotten 3 σ effect !

With 4 order of magnitues more W can do precise test of lepton universality ...

W Leptonic Branching Ratios

Top quark mass

- The top quark mass is experimentally measured at hadron colliders with a precision of ≈ 0.5 %, however the interpretation of the measurements in terms of pole mass is subject to many discussions.
- Given the importance of this parameter in electroweak fits and given its connection to the stability of the electroweak vacuum, any effort to shed light on measurement interpretations and to assess in a robust way systematic uncertainties at hadron colliders is worthwhile.
- Efforts in this direction have already started, with new analysis techniques, which will exploit the large top quark statistics to be collected in the next years at LHC
- Eventually, the top mass must be measured precisely at an e+ecolliders with a top pair production threshold scan

e+e- at 350 GeV: threshold scan

see talk from Patrizia Azzi on Tuesday

- At FCC statistical uncertainty of 5 MeV with 1 ab⁻¹
- Theoretical *current* uncertainty from higher order QCD contribution $\sim 100 \text{ MeV}$
 - Comparing ILC and FCCee assuming identical detector performance

Top couplings

- · can reach a precision at the per-mil level
- ttZ and tt γ can be disentangled without the need of polarization in the initial state
- no need for high energy runs, far above the threshold (\sqrt{s} =365 optimal)

Running of α QED: $\alpha(M_Z)$

• The traditional way to compute $\alpha(M_Z)$ is to compute hadronic loops with dispersion relations by using low energy e^+e^- data.

• Precision should be improved at least a factor 3 to profit of FCC-ee precision

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha_l(s) - \Delta \alpha_{had}^{(5)}(s) - \Delta \alpha_{top}(s)}$$
$$\Delta \alpha_{had}^{(5)}(s) = -\frac{\alpha s}{3\pi} \int_{4m_\pi^2}^{\infty} \frac{R_{had}(s')}{s'(s'-s)} ds'$$

Are there other ways ?

From low angle Bhabha Scattering : Evidence of α running and hadron contribution

19

From large angle μ + μ - scattering at sqrt(s) < M_Z (see talk of Sbyszek WAS on Tuesday)

- Requires careful computation of higher order QED corrections and subtraction of Z component and interference
 - best way is probably include in S-matrix common fit
- One additional motivation to take data off peak

Electroweak (pseudo) observables themselves have different dependence on $\Delta\alpha^{(5)}{}_{\text{had}}$

• Could compute some interesting radiative correction by combinations of two (pseudo)observables and eliminate $\Delta \alpha^{(5)}_{had}$ at first order (e.g. W mass, Z mass and $\sin^2 \theta_W$)

$$1 - \sin^2 \theta_{weff} = \frac{1}{\rho} \frac{m_W^2}{m_Z^2}$$
$$\rho = \left[1 + \varepsilon_1 - \varepsilon_2 - 0.3 \ \varepsilon_3\right]$$

For the ε prameterization see G. Altarelli, R. Barbieri, S. Jadach, Nucl. Phys. B369 (1992) 3.

Other topics non covered

- Neutrino counting
- Triple and quartic gauge couplings
- Measurements of α_s from lineshape and W hadronic decays
- Potential of FCC-hh for, e.g., dibosons

Conclusions

- There are no "a priori" walls on the road map to achieve the FCC goals for EW precision measurements
- Only a lot of work, especially on the theoretical calculations side: an opportunity to contribute
- At the Z, off peak data will play an important role (more than at LEP times)

BACKUP

Typical EWK precision measurements at FCC-ee

The main effort should be directed to

- 1. identify possible systematic uncertainties preventing such precisions
- 2. devise methods to overcome these uncertainties

Quantity	Physics	Present	Measured	Statistical	Systematic	Кеу	Challenge
		precision	from	uncertainty	uncertainty		
$m_{\rm Z}$ (keV)	Input	91187500 ± 2100	Z Line shape scan	5 (6) keV	< 100 keV	E_{beam} calibration	QED corrections
$\Gamma_{\rm Z}$ (keV)	$\Delta \rho (\text{not } \Delta \alpha_{\text{had}})$	2495200 ± 2300	Z Line shape scan	8 (10) keV	< 100 keV	E_{beam} calibration	QED corrections
R_{ℓ}	$lpha_{ m s}, \delta_{ m b}$	20.767 ± 0.025	Z Peak	0.00010(12)	< 0.001	Statistics	QED corrections
N_{ν}	PMNS Unitarity,	2.984 ± 0.008	Z Peak	0.00008(10)	< 0.004		Bhabha scat.
N_{ν}	and sterile ν 's	2.92 ± 0.05	$Z\gamma$, 161 GeV	0.0010(12)	< 0.001	Statistics	
R _b	$\delta_{ m b}$	0.21629 ± 0.00066	Z Peak	0.000003(4)	< 0.000060	Statistics, small IP	Hemisphere correlations
$A_{\rm LR}$	$\Delta \rho, \epsilon_3, \Delta \alpha_{had}$	0.1514 ± 0.0022	Z peak, polarized	0.000015(18)	< 0.000015	4 bunch scheme, 2exp	Design experiment
$m_{\rm W}~({\rm MeV})$	$\Delta \rho$, ϵ_3 , ϵ_2 , $\Delta \alpha_{had}$	80385 ± 15	WW threshold scan	0.3 (0.4)MeV	< 0.5 MeV	E_{beam} , Statistics	QED corrections
$m_{\rm top}~({\rm MeV})$	Input	173200 ± 900	$t\overline{t}$ threshold scan	10 (12) MeV	< 10 MeV	Statistics	Theory interpretation

From arXiv:1308.6176

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc
$M_H \; [\text{GeV}]^{(\circ)}$	125.14 ± 0.24	yes	125.14 ± 0.24	93^{+25}_{-21}	93^{+24}_{-20}
M_W [GeV]	80.385 ± 0.015	_	80.364 ± 0.007	80.358 ± 0.008	80.358 ± 0.006
$\Gamma_W [{\rm GeV}]$	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011	91.2000 ± 0.010
$\Gamma_Z \ [\text{GeV}]$	2.4952 ± 0.0023	—	2.4950 ± 0.0014	2.4946 ± 0.0016	2.4945 ± 0.0016
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.484 ± 0.015	41.475 ± 0.016	41.474 ± 0.015
R^0_ℓ	20.767 ± 0.025	_	20.743 ± 0.017	20.722 ± 0.026	20.721 ± 0.026
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01626 ± 0.0001	0.01625 ± 0.0001	0.01625 ± 0.0001
A_ℓ (*)	0.1499 ± 0.0018	—	0.1472 ± 0.0005	0.1472 ± 0.0005	0.1472 ± 0.0004
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23150 ± 0.00006	0.23149 ± 0.00007	0.23150 ± 0.00005
A_c	0.670 ± 0.027	_	0.6680 ± 0.00022	0.6680 ± 0.00022	0.6680 ± 0.00016
A_b	0.923 ± 0.020	_	0.93463 ± 0.00004	0.93463 ± 0.00004	0.93463 ± 0.00003
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0738 ± 0.0003	0.0738 ± 0.0003	0.0738 ± 0.0002
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1032 ± 0.0004	0.1034 ± 0.0004	0.1033 ± 0.0003
R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006
R_b^0	0.21629 ± 0.00066	—	0.21578 ± 0.00011	0.21577 ± 0.00011	0.21577 ± 0.00004
$\overline{m}_c [\text{GeV}]$	$1.27 \substack{+0.07 \\ -0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	_
$\overline{m}_b [{\rm GeV}]$	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	-	—
$m_t \; [\text{GeV}]$	173.34 ± 0.76	yes	173.81 ± 0.85	$177.0^{+2.3}_{-2.4}(\bigtriangledown)$	$177.0\pm2.3^{(\bigtriangledown)}$
$\Delta \alpha_{\rm had}^{(5)} (M_Z^2)^{(\dagger \Delta)}$	2757 ± 10	yes	2756 ± 10	2723 ± 44	2722 ± 42
$\alpha_s(M_Z^2)$	-	yes	0.1196 ± 0.0030	0.1196 ± 0.0030	0.1196 ± 0.0028

[Gfitter group, EPJC 74, 3046 (2014)]

Asymmetry from Drell-Yan events at LHC

- Signature is clear and background is low, however \rightarrow
- forward-backward asymmetry: need to know quark direction
- at LO easy at Tevatron (p pbar)
- at LHC study DY cross section as a function of invariant mass and
 assume that at high rapidity direction
- assume that at high rapidity direction gives information on direction of valence quark

Dilepton Drell Yan cross section

Weak mixing angle at LHC

ATLAS-CONF-2013-043

- Select central dilepton pairs, and also centralforward electrons with full 7 TeV dataset
- Raw AFB = Count forward/ backward abundance in CS frame
- AFB in good agreement with PYTHIA * PHOZPR NNLO K-factor (MSTWNNLO2008)
- 1.8σ lower angle than LEP +SLD average

Prospects for top mass at the LHC

- There is potential to improve standard methods, taking advantage of the high statistics for, e.g., in-situ JES calibration, constraining models from differential studies, etc.
- There is even greater potential for alternative methods, most of the current systematic uncertainties can be reduced with higher statistics, e.g. top pt modeling, in-situ JES again
- Improvements on the cross section method are linked to improvements in the luminosity and beam energy uncertainties at LHC
- A optimistic view (maybe realistic give past experience at colliders !) of the evolution in precision is given in the picture

From CMS PAS FTR-13-017, prepared for the "European Strategy for particle physics" discussions