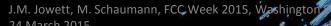


FCC-hh as a Heavy-Ion Collider


CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-14 18:37:44.420271 GMT(19:37:44 CEST) Run / Event: 15107671405388

🔪 John Jowett, CERN

Michaela Schaumann, RWTH-Aachen & CERN

Acknowledgements: A. Dainese (INFN, Padova), B. Holzer (CERN)

8 PeV

General FCC-hh Parameters

In relation to FCC-hh, assumed working as p-p collider, consider Pb-Pb and p-Pb collisions at maximum energy.

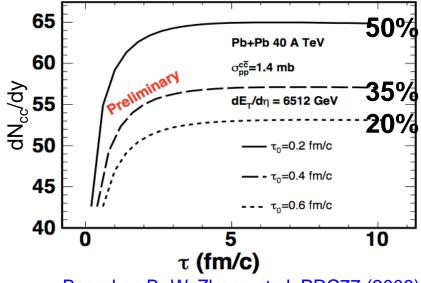
	Units	Injection	Collision
Circumference	[km]	100	100
Main dipole strength	[T]	1.0	16
Bending radius	[m]	10424	10424
Proton equivalent energy	[TeV]	3.3	50
Pb energy	[TeV]	270	4100
Pb energy/nucleon	[TeV]	1.3	19.7
Pb-Pb CM energy \sqrt{s}	[TeV]		8200
Pb-Pb CM energy/nucleon pair $\sqrt{s_{_{NN}}}$	[TeV]		39.4
p-Pb C.M. energy \sqrt{s}	[TeV]		905
p-Pb C.M. energy/nucleon pair $\sqrt{s_{_{NN}}}$	[TeV]		62.8

Problems that are "in the shadow" of p-p

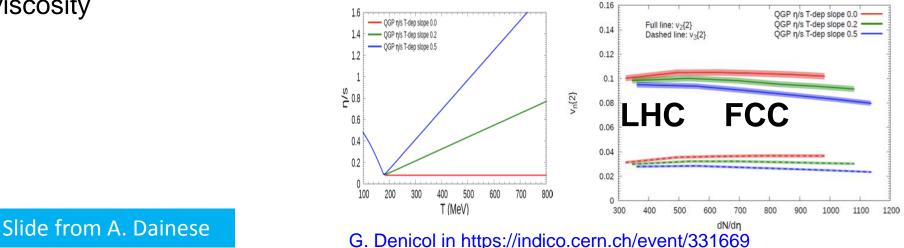
- Optics design
- Collective effects
 - lower charge per bunch, fewer bunches
 - Including impedance-driven, beam-beam, electron cloud
- Stored beam energy
 - Not as large as in p-p (but still large ...)
 - Nevertheless collimation efficiency is likely to be much lower!

What is new with heavy-ion beams w.r.t. protons?

• Synchrotron radiation damping is *twice as fast*


- $\alpha_{\epsilon} \propto \frac{Z^5}{m^4}$ in the same magnetic field Free natural beam cooling, not limited by beam-beam tuneshift.
- Pb nuclei are accompanied by intense fluxes of high energy quasi-real photons:
 - (Physics interest ...)
 - Leads to powerful secondary beams emerging from collision point
 - Extreme luminosity burn-off from electromagnetic crosssections
 - More complicated interactions with collimators
- Stronger intra-beam scattering ultimately limits emittance

Physics with ions at FCC


- Physics opportunities with heavy ion beams at the FCC (AA, pA) are investigated by a dedicated WG within the FCC-hh group: 4 workshops held (<u>https://indico.cern.ch/event/331669</u> and links therein)
- Main directions:
 - Quark-Gluon Plasma studies:
 - larger size and stronger expansion \rightarrow better sensitivity to QGP-fluid properties
 - higher temperature → large thermal charm production? full melting of quarkonia?
 - new hard probes available (e.g. top quarks)
 - Saturation of small-x gluon densities (with pA <u>and eA</u>): reach down x_{Bjorken}~10⁻⁶ (one order of magnitude smaller than at LHC)
 - Ion beams \rightarrow photon-induced collisions ($\gamma+\gamma$, $\gamma+A$): saturation and EW studies
- More information:
 - Presentation on eA (and AA) physics by M.Ploskon (this workshop)
 - <u>http://arXiv:1407.7649 (Nuclear Physics A 931, 2014, 1163–1168)</u>
 - <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/Heavylons</u>

Just two examples

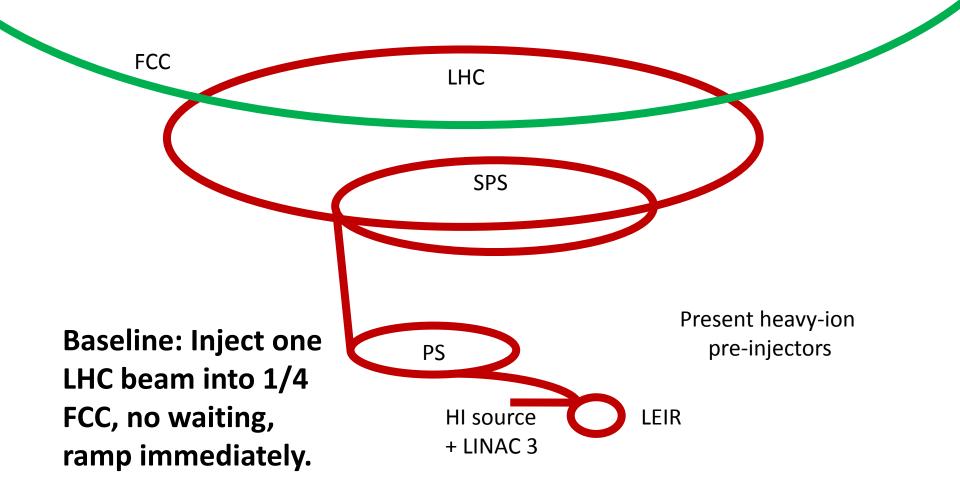
- Significantly larger initial temperature? Could reach close to 1 GeV?
 - Abundant "thermal" production of ccbar pairs in the medium?
 - Full suppression of quarkonia (Y(1S) may not be suppressed at LHC)
- Anisotropic flow measurements become sensitive to currentlyinaccessible properties of the QGP: e.g. temperature dependence of viscosity

Based on B.-W. Zhang et al. PRC77 (2008)

J.M. Jowett, M. Schaumann, FCC Week 2015, Washington DC, 24 March 2015

Previous references on AA & pA in FCC-hh

- M. Schaumann, Ions at the Future Hadron Collider, 16-17 Dec. 2013, CERN <u>https://indico.cern.ch/event/288576/</u>
- M. Schaumann, FCC Study Kick-off Meeting, 12-15 Feb. 2014, Geneva https://indico.cern.ch/event/282344/
- M. Schaumann, Ions at the Future Hadron Collider <u>https://indico.cern.ch/event/331669/</u> (update to 100 km)
- M. Schaumann, Chapter 9 of thesis submitted to RWTH, Aachen
- M. Schaumann, "Potential performance for Pb-Pb, p-Pb and p-p collisions in a future circular collider", paper submitted to Phys. Rev. ST-AB


Studies focussed on emittance and luminosity evolution with strong radiation damping, IBS and luminosity burn-off, etc.

CERN Heavy-Ion Injector Complex

- Present study very conservatively assumes the Pb injector performance achieved for LHC p-Pb run in 2013
- Potential upgrades needing study
 - Better ion source?
 - Upgrade/replacement of LEIR, faster cooling, higher injection into PS ?
 - Degradation of bunches along trains at SPS injection (alternatives to fixed harmonic acceleration with present 200 MHz RF system?)
- LHC as HEB injector into FCC-hh

Heavy Ion Pre-Accelerator Chain

Straw-man assumption to estimate (conservative) beam parameters and luminosity: LHC, as it is today, but cycling to 3.3 Z TeV, is assumed to be the injector for FCC-hh.

Pb Beam Parameters in LHC and FCC-hh

Best injector performance achieved in 2013 p-Pb run.

Average beam parameters from 2013 are assumed as VERY conservative baseline for FCC-hh!

Improvements are already under study for HL-LHC!

	LHC Design	LHC 2011	LHC 2013	FCC-hh
Beam Energy [Z TeV]	7	3.5	4	50
β-function at the IP [m]	0.5	1.0	0.8	1.1
No. lons per bunch [10 ⁸]	0.7	1.20 ± 0.25	1.40 ± 0.27	1.4
Transv. normalised emittance [μ m. rad]	1.5	1.7 ± 0.2	~1.5	1.5
RMS Beam Size at IP [μm]	15.9	33.9	26.6	8.8
RMS bunch length [cm]	7.94	9.8 ± 0.7	9.8 ± 0.1	8
Number of bunches	592	358	358	432
Peak Luminosity $[10^{27} \text{cm}^{-2} \text{s}^{-1}]$	1	0.5 (Pb-Pb)	110 (p-Pb)	?

Geometric emittance at injection > protons – possible issue for aperture choice?

Beam and Luminosity Evolution

During the beams are in collision the instantaneous value of the luminosity will change:

$$\mathcal{L}(t) = A \frac{N_b^2(t)}{\sqrt{\epsilon_x(t)\epsilon_y(t)}}$$

The beam evolution with time is obtained by solving a system of four differential equations (dominant effects only shown here, more included in simulations):

 $\mathrm{d}N_b$ $= -\sigma_{c,\text{tot}} A \frac{N_b^2}{\sqrt{\epsilon_x \epsilon_y}}$ Intensity $\mathrm{d}t$ $\mathrm{d}\epsilon_x$ $\epsilon_x(\alpha_{\mathrm{IBS},x} - \alpha_{\mathrm{rad},x})$ $\mathrm{d}t$ $\frac{\mathrm{d}\epsilon_y}{\mathrm{d}t}$ $= \epsilon_y (\alpha_{\text{IBS},y} - \alpha_{\text{rad},y})$ $= \frac{1}{2} \sigma_s (\alpha_{\text{IBS},s} - \alpha_{\text{rad},s})$ $\mathrm{d}\sigma_s$

```
with
  A = f_{\rm rev} k_b / (4\pi\beta^*)
 f_{\rm rev} : revolution freq.
  k_b : no. bunches/beam
  \beta^*: \beta-function at IP
  N_b : no. particles/bunch
  \epsilon : geom. emittances
 \sigma_s : bunch length
\sigma_{c,\text{tot}}: total cross-section
\alpha_{\rm IBS} : IBS growth rate
\alpha_{\rm rad}: rad. damping rate
```

```
Hor. Emittance
Ver. Emittance
```

Analytical solution difficult, due to dependence of α_{IBS} on N_b , ϵ_x , ϵ_y , σ_s .

Bunch Length

J.M. Jowett, M. Schaumann, FCC Week 2015, Washington DC, 24 March 2015

Effects on the Emittance – a new regime

Intra-Beam Scattering (IBS)

Multiple small-angle Coulomb scattering within a charged particle beam.

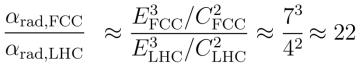
Emittance Growth

Growth rate dynamically changing with beam properties:

 $\alpha_{IBS} \propto \frac{r_0^2}{\gamma^4} \frac{N_b}{\epsilon_x \epsilon_y \sigma_s \sigma_p}$

IBS is weak for initial beam parameters, but increases with decreasing emittance.

Growth Times	Unit	FCC @ 50Z TeV
$1/\alpha_{\mathrm{IBS},\mathrm{s}}$	[h]	29.1
$1/\alpha_{\rm IBS,x}$	[h]	30.0

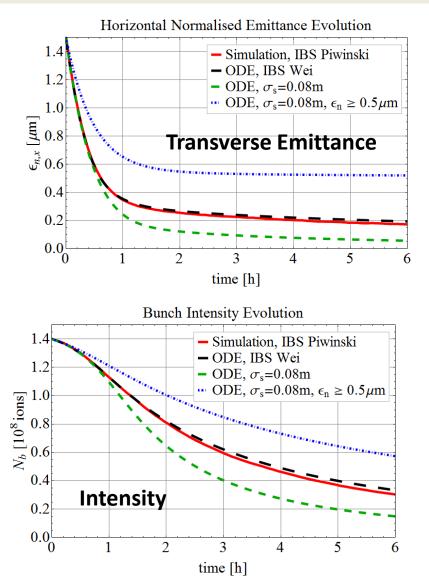

(Synchrotron) Radiation Damping

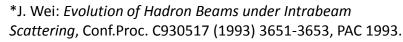
A charged particle radiates energy, when it is accelerated, i.e. bend on its circular orbit.

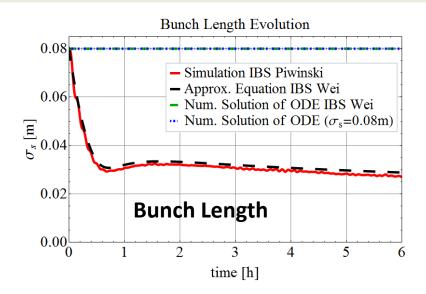
Emittance Shrinkage

Damping rate is **constant** for a given energy:

$$\alpha_{rad} \propto \frac{E^3 C_\alpha}{\rho_0 C_{ring}}$$

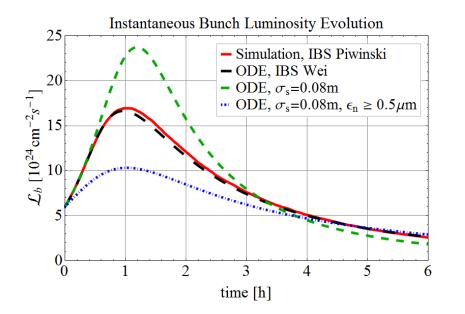

Damping Times	Unit	FCC @ 50Z TeV
$1/\alpha_{\rm rad,s}$	[h]	0.24
$1/\alpha_{\rm rad,x}$	[h]	0.49

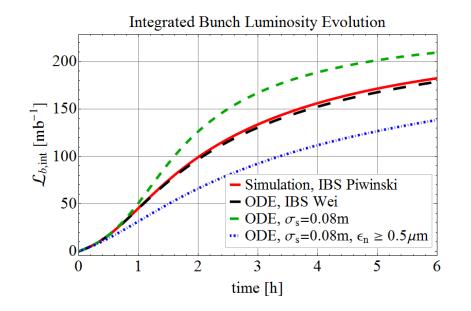

Fast emittance decrease at the beginning of the fill, until IBS becomes strong enough to counteract the radiation damping.


Pb-Pb BEAM AND LUMINOSITY EVOLUTION

J.M. Jowett, M. Schaumann, FCC Week 2015, Washington DC, 24 March 2015

Pb-Pb Beam Evolution

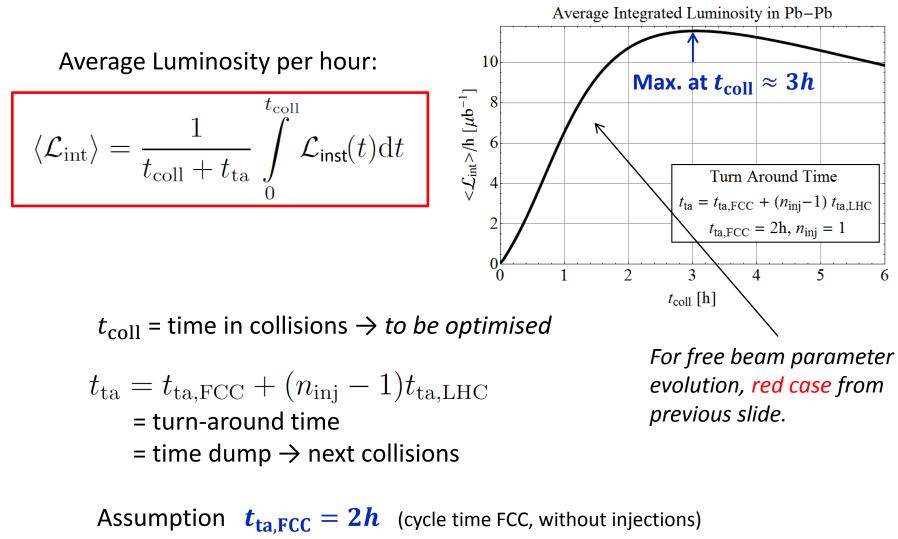



- **Red: tracking simulation** taking into account IBS, rad. damping, burn-off, ...
- **Black:** numerical solution of the ODE system on slide 7, using J. Wei's analytical IBS formalism*.
 - → emittances and bunch length become very small!
 - **Green:** $d\sigma_s/dt = 0$: artificial longitudinal blowup to $\sigma_s = 8$ cm.
- **Blue:** artificial longitudinal and transverse blow-up to σ_s = 8cm and $\epsilon_n \ge 0.5 \mu m$.

Pb-Pb Luminosity Evolution

If the beam dimensions become too small and artificial blow-up has to be used, the luminosity will be affected:

- Peak Enhancement for long. blow-up, since long. and horizontal IBS are reduced, due to larger $\sigma_s \rightarrow$ smaller ϵ_n .
- **Reduced luminosity**, due to blown-up ϵ_n .

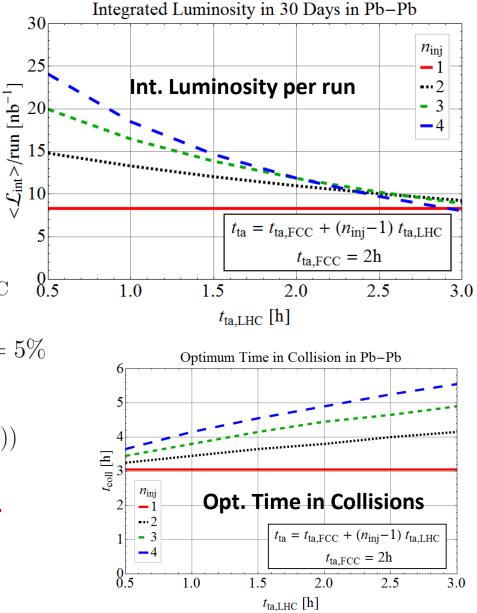


Summary for free beam evolution

(no artificial blow-up)

	Unit	per Bunch	whole Beam
$L_{ m initial}$	[Hz/mb]	0.006	2.6
$L_{\rm peak}$	[Hz/mb]	0.017	7.3
$L_{\rm int, fill}$	$[\mu b^{-1}]$	0.13	57.8

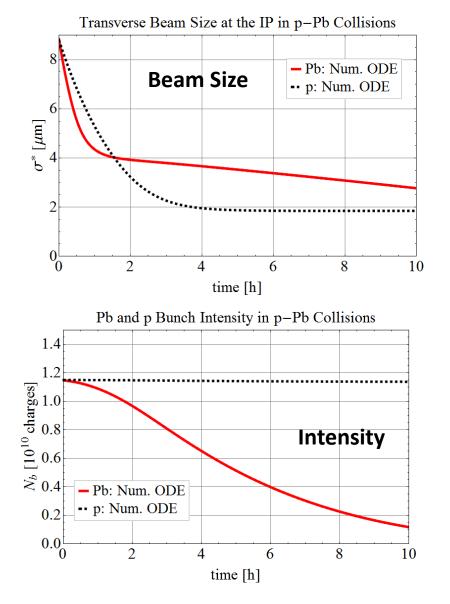
Pb-Pb Average Luminosity

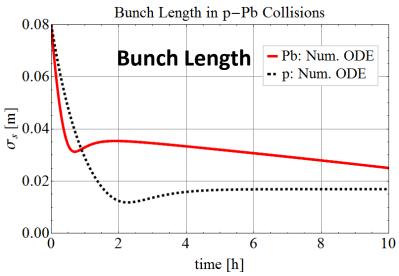


 $n_{ini} = 1$ (no. injections from LHC)

Pb-Pb Integrated Luminosity per Run

- Assumption $t_{ta,FCC} = 2h$.
- Consider more LHC injections: \rightarrow max. $n_{inj} = 4$ (= FCC Length) \rightarrow Dwell time at FCC inj. plateau \rightarrow lengthen $t_{ta} = t_{ta,FCC} + (n_{inj} - 1)t_{ta,LHC}$ 8 \rightarrow Particle losses (& emittance growth) \rightarrow Loss rate of Pb at injection: $R_{loss} = 5\%$ \rightarrow Total beam intensity: $N_{beam} = k_b N_b \sum_{i=1}^{n_{inj}} (1 - R_{loss}t_{ta}(i - 1))$

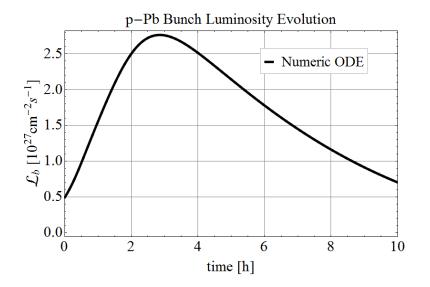

$$\rightarrow < \square_{\text{int}} > \square (N_{\text{beam}}/k_b N_b)^2 \times < \square_{\text{int}} >$$

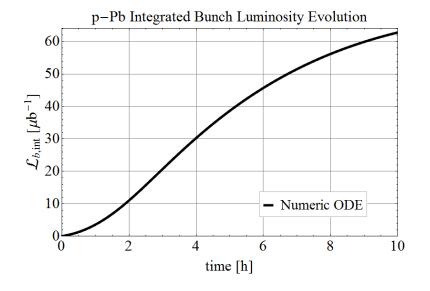


p-Pb BEAM AND LUMINOSITY EVOLUTION

LHC has shown that p-Pb, injecting and ramping with unequal revolution frequencies is feasible. This will work for injection (provided we keep independent RF systems) and may not even be necessary in FCC ring.

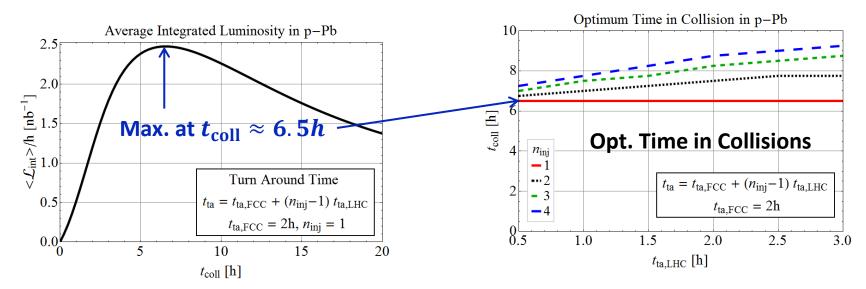
p-Pb Beam Evolution (1 Experiment)

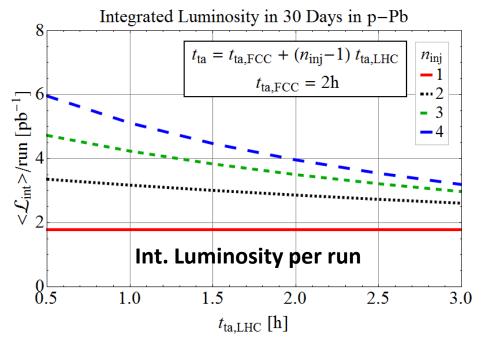



Initial conditions:

- Pb-beam as for Pb-Pb operation.
- Equal beam sizes, σ^* , for p and Pb.
- Rad. damping $\propto Z^5/A^4 \approx 2$ $\rightarrow 2\alpha_{rad}(p) \approx \alpha_{rad}(Pb)$
- IBS scales with $\propto (Z^2/A)^2 N_b$
- $N_b(\mathbf{p}) \approx 100 N_b(Pb)$ \rightarrow Fast Pb burn-off, while $N_b(\mathbf{p}) \approx \text{const.}$

p-Pb Luminosity Evolution (1 Experiment)




Peak shifted to later times \rightarrow p shrinks slower than Pb $2\alpha_{rad}(p) \approx \alpha_{rad}(Pb)$ Luminosity decay slower $\rightarrow N_b(p) \approx \text{const.}$ $\rightarrow 1/\text{e-Luminosity lifetime} \approx 14\text{h.}$

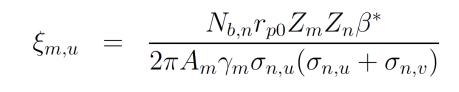
	Unit	per Bunch	whole Beam
$L_{ m initial}$	[Hz/mb]	0.5	213
$L_{\rm peak}$	[Hz/mb]	2.8	1192
$L_{\rm int, fill}$	$[\mu b^{-1}]$	48.7	21068

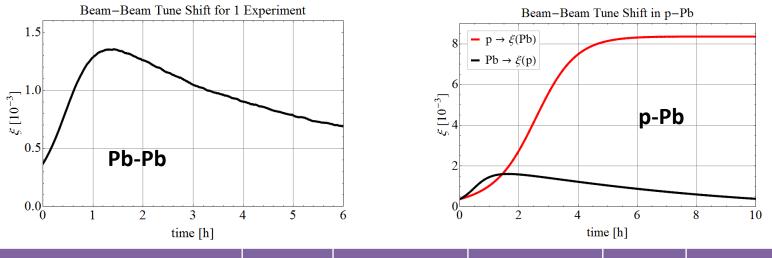
p-Pb Luminosity vs. Turn-Around Time

J.M. Jowett, M. Schaumann, FCC Week 2015, Washington DC, 24 March 2015

For $n_{inj} = 1$

- \rightarrow Optimised fill length = 6.5h
- \rightarrow < \Box_{int} >/run \approx 1.7pb⁻¹
- $n_{inj} > 1$ could give higher < \Box_{int} >/run
- → But uncertainty on prediction significantly enhanced.
- → Early beam aborts and longer inj. times, due to lost beams in the LHC, reduce <□_{int}>/run.
- → injection and fill times are both in the order of 10h!

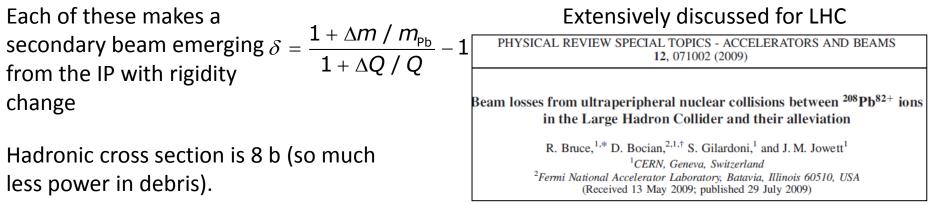

POTENTIAL LIMITATIONS


J.M. Jowett, M. Schaumann, FCC Week 2015, Washington DC, 24 March 2015

Beam-Beam Tune Shift

Beam-beam tune shift per experiment:

- Beam *m* receives kick from Beam *n*
- *u,v =x, y*

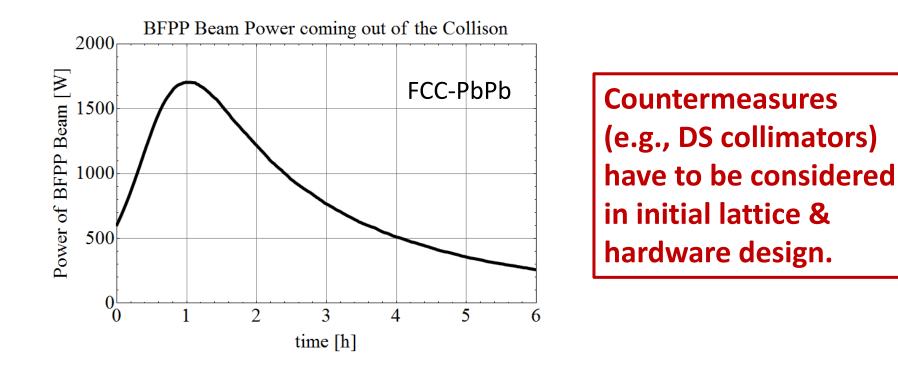


Beam-Beam Parameter per Experiment	Unit	LHC Design p-p	LHC Design Pb-Pb	FCC Pb-Pb	FCC p-Pb
Initial	$[10^{-3}]$	3.7	0.18	0.37	0.37
Peak	$[10^{-3}]$	3.7	0.18	1.4	8.3

The tune shift due to beam-beam interactions remains well below assumed limit for Pb-Pb, but comes close to the limit for Pb in p-Pb collisions.

γ - γ and γ -A processes in Pb-Pb collisions at FCC-hh

 $\begin{array}{l} \mbox{BFPP1:} \ {}^{208}\mbox{Pb}^{82+} + {}^{208}\mbox{Pb}^{82+} + {}^{208}\mbox{Pb}^{81+} + {\rm e}^+, \\ \sigma = 354\mbox{ b}, \quad \delta = 0.01235 \\ \mbox{BFPP2:} \ {}^{208}\mbox{Pb}^{82+} + {}^{208}\mbox{Pb}^{82+} + {}^{208}\mbox{Pb}^{82+} + {}^{208}\mbox{Pb}^{80+} + 2{\rm e}^+, \\ \sigma \approx 10\mbox{ mb}, \quad \delta = 0.02500 \\ \mbox{EMD1:} \ {}^{208}\mbox{Pb}^{82+} + {}^{208}\mbox{Pb}^{82+} \longrightarrow {}^{208}\mbox{Pb}^{82+} + {}^{207}\mbox{Pb}^{82+} + {\rm n}, \\ \sigma = 200\mbox{ b}, \quad \delta = -0.00485 \\ \mbox{EMD2:} \ {}^{208}\mbox{Pb}^{82+} + {}^{208}\mbox{Pb}^{82+} \longrightarrow {}^{208}\mbox{P}\mbox{b}^{82+} + {}^{206}\mbox{Pb}^{82+} + 2{\rm n}, \\ \sigma = 35\mbox{ b}, \quad \delta = -0.00970 \end{array}$


J.M. Jowett, M. Schaumann, FCC Week 2015, Washington DC, 24 March 2015

BFPP1 Beam Power in Pb-Pb for FCC-hh

BFPP1 Beam power: $P = \sigma_c L E_{4.1 \text{ PeV}} \approx 1.7 \text{ kW}$ (peak)

nominal LHC: $P \approx 26W$

 \rightarrow already expected to cause operational problems and poaaible long-term damage

Secondary beams from Pb-Pb collisions (Lattice V4 baseline)

 $(12\sigma_x, 12\sigma_y, 1\sigma_t)$ envelope for $\epsilon_x = 4.1284 \times 10^{-11}$ m, $\epsilon_y = 4.1284 \times 10^{-11}$ m, $\sigma_p = 0.00006$ 0.03 ²⁰⁸Pb⁸¹⁺/(BFPP1) 0.02 ²⁰⁸Pb⁸⁰⁺ (BFPP2) 0.01 ?? IP Ē 0.00 ²⁰⁷Pb⁸²⁺ (EMD1) 🖁 -0.01 ²⁰⁶Pb⁸²⁺ (EMD2) -0.02 -0.03200 0 400 600 800 1000 s/m

Smaller Z Ions – Impact on hadronic event count

- Lower Z \square possibly higher N_b available from injectors
- Contribution of ultra-peripheral electromagnetic processes to the total cross-section would be reduced:
 - $\circ \sigma_{\rm BFPP} \propto Z^7$
 - $\circ \sigma_{\rm EMD} \propto Z^4$
 - Increased luminosity lifetime, more particles available for hadronic interactions.
 - Reduced secondary beam power emerging from collision point.
- Radiation damping rate does not change much for Z>60: $\circ \alpha_{rad} \propto Z^5/A^4$
- \circ $\,$ Lower Z beams would put more burn-off into hadronic events

$$N_{\text{hadronic}} = \sigma_h \int L dt \propto \frac{\sigma_h}{\sigma_h + \sigma_{\text{BFPP}} + \sigma_{\text{EMD}}} N_{tot} \propto Z^{-(6-8)}$$

• Worth considering small Z reduction from Pb to, e.g.,

70

Heavy-Ion Beam Parameter Summary

	Unit	LHC	FCC	FCC	FCC		
		\mathbf{Design}	Injection	Collision	Collision		
General Beam Parameters							
Operation mode	-	Pb-Pb	Pb	Pb-Pb	p-Pb		
Beam energy	[TeV]	574	270	4100	50		
Relativistic γ -factor		2963.5	1397	21168	53290		
No. of bunches	-	592		432			
No. of particles per bunch	$[10^8]$	0.7	1.	4	115		
Transv. norm. emittance	$[\mu m.rad]$	1.5	1.	5	3.75		
RMS bunch length	[cm]	7.94	10.0	8	.0		
RMS energy spread	$[10^{-4}]$	1.1	1.9	0	.6		
Long. emittance (4σ)	[eVs/charge]	2.5	2.6	10.1			
Circulating beam current	[mA]	6.12	2.38				
Stored beam energy	[MJ]	3.8	2.6	2.6 39.8			
	Intra Beam	Scattering					
Long. IBS emit. growth time	[h]	7.7	6.2	29.2	4×10^3		
Hor. IBS emit. growth time	[h]	13	10.0	30.0	4×10^3		
	Synchrotron	Radiation					
Long. emit. rad. damping time	[h]	6.3	852	0.24	0.5		
Hor. emit. rad. damping time	[h]	12.6	1704	0.49	1.0		
Power loss per ion	[W]	2.0×10^{-9}	1.1×10^{-11}	5.7×10^{-7}	3.4×10^{-9}		
Power loss per meter in main bends	[W/m]	0.005	1.0×10^{-5}	0.53	0.26		
Energy loss per ion per turn	[MeV]	1.12	0.01	775.3	4.7		
Synchrotron radiation power per ring	[W]	83.9	0.7	34389	17016		
Critical photon energy	[eV]	2.77	0.08	269.3	4300.8		

Heavy-Ion Luminosity Summary

	Unit	LHC	FCC	FCC			
	Om	\mathbf{Design}	Collision	Collision			
	Luminosity						
Operation mode	-	Pb-Pb	Pb-Pb	p-Pb			
β -function at the IP	[m]	0.5	1.	.1			
Initial RMS beam size at IP	$[\mu \mathrm{m}]$	15.9	8.8				
Initial luminosity	[Hz/mb]	1	2.6	213			
Peak luminosity	[Hz/mb]	1	7.3	1192			
Integrated luminosity per fill	$[\mu b^{-1}]$	<15	57.8	21068			
Integrated luminosity per run	$[\mathrm{nb}^{-1}]$	-	8.3	1784			
Initial bb tune shift per IP	$[10^{-4}]$	1.8	3.7	3.7			
Total cross-section	[b]	515	597	2			
Peak BFPP beam power	[W]	26	1705	0			
Initial beam current lifetime	[h]	<11.2 (2 exp.)	10.9	39.3			
Luminosity lifetime (\mathcal{L}_0/e)	[h]	< 5.6 (2 exp.)	6.2	14.0			

Future work needed

- Number of active experiments to be considered very carefully! 1 or 2 ?
- Counter measures for (few kW) secondary beams from IPs
 - Robust collimators/absorbers in dispersion suppressors
 - Shower calculations, magnet quench risks, etc.
- Include heavy ion beams in future evolution of injector chain
 - Maximise no. of ions injected in collider!!
 - Do we have to live with present limits in SPS?
- Extend LHC heavy-ion collimation studies to FCC
 - Does synchrotron radiation damping solve this for us ?
- Vacuum effects?

Collaboration welcome!

Conclusions and Outlook

- With very conservative assumptions (past LHC Pb beams), FCC-hh has clear potential for high luminosity nucleus-nucleus and proton-nucleus collisions
- New, highly efficient collider regime of strong radiation damping can be fully exploited with heavy-ion beams
- Photon-photon and photonuclear processes create powerful secondary beams emerging from IP

- Foresee counter-measures *from the start* (cf LHC experience)

 Extreme luminosity burn-off is a fact of nature – physics community might want to consider somewhat lower-Z species ?

BACKUP SLIDES