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Synchrotron radiation

= Radiation integrals computed with MAD-X
(TOY lattice, 100km)

= Energy loss per turn 4.2 [MeV/turn]
= Emittance damping time : 1.1 [h]
= Natural (normalized) emittance : 0.04 ym
— 55 times smalller than the initial emittance

= Control of the longitudinal emittance is required to
ensure the coherent stability

= |n the transverse plane, the coherent stability will be ensured
by the amplitude detuning due to head-on beam-beam
Interactions

= All systems (instrumentation, cleaning, machine protection, ...) MUSt
be designed to cope with the large range of transverse
emittances



@ Intrabeam scattering

Growth rate estimated with ool
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Beam-beam

Interactions
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= Non-linearities of beam-beam ks
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Luminosity levelling

= The nominal scenario foresee a limitation of the luminosity
at 5-10°* (Ultimate : 2-10%)

B* Transverse offset at the IP Transverse emittance
+ Small 3* reached with + Easy to implement + Easy to implement
large aperture margin + Flexible + Reduction of the beam-
+ Reduced long-range beam tune shift
beam-beam effect + Reduced IBS
+ Flexible - Does not ensure - Non local
- Operationally difficult coherent stability
(Optics + collimation through head-on
control) collision

= A combination of the techniques should not be excluded, e.g. one
could level the luminosity with the transverse emittance and reduce the (3*
once the equilibrium emittance is reached

— The choice will depend on the limiting factors

* Does not reduce beam-beam non-linearities — could lead to similar equilibrium emittance
as with head-on collision



Parameter

Energy [TeV]
Length [km]

Bunch intensity [p]
Normalised emittance [um]

Nb. bunches

Target luminosity [cm?®s™]

Bunch length [cm]

EtO'[

Turn around [h]
Number of IPs

p* [m]

Long-range beam-beam

separation [O]

Nominal parameters

Nominal

50

100
1011
2.2
10'600
5-10%
8

0.01

5

2
1.1
12



Nominal configuration
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Nominal configuration

Luminosity leveling is not
required with nominal
parameters

Long fills needed (~12h)
— High reliability

Limited by the maximum
beam-beam tune shift

— reduce (3*

Limited by the levelled
luminosity
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Avg lumi. production rate 3.18 [fb*lfqay]

x10%

Time [h]



Nominal configuration

with higher instantaneous luminosity

. 1.0 x10M Avg?lumi. productionj rate 5.02 [fb*lffiay]
= Shorter fills thanks to the .5 -~

= Large reduction factor
- Large Piwinski angle

= Limited by the beam-
beam tune shift
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Nominal configuration

with higher instantaneous luminosity

= Shorter fills thanks to the
faster luminosity burn off

1.0 101 Avg lumi. production rate 5.36 [fb*lfgay]

= Large reduction factor

- Large Piwinski angle
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= Limited by the beam-
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(compensation?)

Reduction fact.

¢/IP

10 15 20
Time [h]

o
ol /1



Nominal configuration

with higher instantaneous luminosity

1.0 x10M Avg lumi. production rate 7.31 [fb!/day]
= Shorter fills thanks to the | | |
faster luminosity burn off

= Large reduction factor

- Large Piwinski angle

x10%

— Crab crossing A
= Limited by the beam-
beam tune shift

- |ncrease the limit
(compensation?)

= Limited by the turn
around time (5h)

Time [h]



Ultimate configuration

1.0 x101 Avg lumi. production rate 8.17 [fb'/day]

Parameter Nominal Ultimate 2ol N |
Energy [TeV] 50

Length [km] 100 - : Gorti'zorlﬂal g
Bunch intensity [p] 10"

Normalised emittance [um] 2.2
Nb. bunches 10'600
Target luminosity [cm™®s™]  5-10* 2:10%

Bunch length [cm] 8
3 001  0.03
Turn around [h] 5 4
Number of IPs 2
B* [m] 1.1 0.3 S
Long-range beam-beam 12 Crab N %é
separation [0] Cavity =08
0.0; 5 10 15 20

Time [h]



Ultimate configuration

1.0 x10M Avg lumi. production rate 8.17 [fb'/day]
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Ultimate 5 ns

20 1010 Avg lumi. production rate 7.99 [fb*lfgay]

Parameter Ultimate Ultimate | | |

Energy [TeV] 50 7 N N . SR
Length [km] 100 AL

. . T20F T Tiorizontal I
Bunch intensity [p] 10* 2:10" =L S A I -l
Normalised emittance [um] 2.2 0.44 T —
Nb. bunches 10'600  53'000 Soob—ou 1 00O ]

Target luminosity [cm™®s™]  2:10% > 2.10%

Bunch length [cm] 8
€ 0.03

tot

Turn around [N] 4
Number of IPs 2
B* [m] 0.3

Long-range beam-beam 12
separation [0] (CO)

1| 2 S

= Similar performance canbe “o¢f = —

achieved with the 5 ns option =& & =

Time [h]




@ Performance

Configuration Average Integrated
luminosity luminosity
production [fm]*

rate [fm™*/day]

Nominal 2.3 8'050

+ lower 3* (0.3 m) 3.2 11'200
(+39%)

+ Higher levelled luminosity 5.0 17'500

(2:10%* [cm-2/s-1]) (x2.1)

+ higher beam-beam tune shift 5.4 18'900

(0.03) (x2.3)

+ Crab crossing 7.3 25'550
(x3.2)

+ Shorter turn around (4h) 8.2 28'700

- Ultimate 25 ns (x3.7)

Ultimate 5 ns 8.0 28'000
(%3.5)

* Assuming 25 years of run, with 140 effective days per year (D. Schulte @ FCC Week 2015)



@ Effect of the lifetime
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= A beam lifetime degradation due processes
above 50 h reduces the performance by > 10%

= Less critical in the ultimate scenario, due to the fast
luminosity burn off



Effect of other

Interactions points

= The presence of lower
luminosity experiments |
In Point H and F will : o A

== DS (L=0.4km,R=17.3km)
. == Straight
n Have a Weak |mpaCt on the J 7_C0II 2.8km ’ Coll 2.8km *—D
losses due to luminosity Btk Bt 4iem

burn-off

= |ncrease the total head-on
beam-beam tune shift




Effect of other

Interactions points

5 X 1010 Avg lumi. production; rate 0.68 [fb*llfiay]
= The presence of lower g |
luminosity experiments =1 .
In Point H and F will : g2
* Have a weak impact on the e R S S
losses due to luminosity 2 ool == | .
= Increase the total head-on Zgg |
beam-beam tune shift 3?3”
- Need to reduce the
bunch intensity -
-~ X3.4* reduction of
the performance T

Time [h]



@ Effect of the crab
7\

Crossing

. . : (0 x10™ _ Avg lumi. production rate 5.94 [fb'/day]
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Effect of the crab

= The ultimate configuration
without crab crossing is
limited by the geometric
reduction factor

= One could adjust the crossing
angle during the fill, keeping
constant the normalised
separation between the
beams

crossin

1011

Avg lumi. production rate 7.7 [fb*lfdlay]

1 — Horizontal |7
.| — Vertical ]

Time [h]

20



Effect of the crab
Crossing

1011 Avg lumi. production rate 7.7 [fb !/day]

= The ultimate configuration .. O L
without crab crossing is goa | ]
limited by the geometric ool I ——on

1 — Horizontal |7
.| — Vertical ]

= One could adjust the crossing
angle during the fill, keeping
constant the normalised
separation between the
beams

= Only 6% difference in
performance between the two
scenarios

— The non-linear dynamic
assess both scenarios | S




Conclusion

= The nominal configuration is limited by the head-on beam-beam tune
shift

* Actual limit and compensation schemes need to be studied
(€ =0.034 achieved in the LHC*)

= The nominal configuration rely on long fills (~ 12n), i.e. high reliability
(6h in average for the LHC in 2012**)

* R. Alemany, et al, Head-on beam-beam tune shifts with high brightness beams in the LHC, CERN-ATS-Note-2011-029 MD
**A. Macpherson, LHC Availability and Performance in 2012, Proceedings of the 2012 Evian Workshop on LHC Beam Operation
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Conclusion

= The nominal configuration is limited by the head-on beam-beam tune
shift

* Actual limit and compensation schemes need to be studied
(€ =0.034 achieved in the LHC*)

= The nominal configuration rely on long fills (~ 12n), i.e. high reliability
(6h in average for the LHC in 2012**)

= The ultimate scenario is mainly limited by the turn around time

= A scenario with 5 ns bunch spacing could provide a similar
performance with a lower pile up

= Assuming 2 runs of 5 years with nominal parameters and 3 with
ultimate parameters, one integrates >~ 17'500 fm™

= The design need to take into account the slow, yet large, variation of

the transverse emittance during the fill (Adaptive B* and crossing angle,
collimation, beam instrumentation, beam stability, ...)

* R. Alemany, et al, Head-on beam-beam tune shifts with high brightness beams in the LHC, CERN-ATS-Note-2011-029 MD
**A. Macpherson, LHC Availability and Performance in 2012, Proceedings of the 2012 Evian Workshop on LHC Beam Operation
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