

FCC week 2015

Beam parameters evolution and luminosity performance

X. Buffat, D. Schulte

Acknowledgements to B. Holzer, R. Martin, R. Thomas and S. White

- Luminosity model
 - Synchrotron radiation
 - Intrabeam scattering
 - Beam-beam effects
 - Luminosity levelling
- Performance
 - Nominal
 - Ultimate 25 ns / 5 ns
- Conclusion

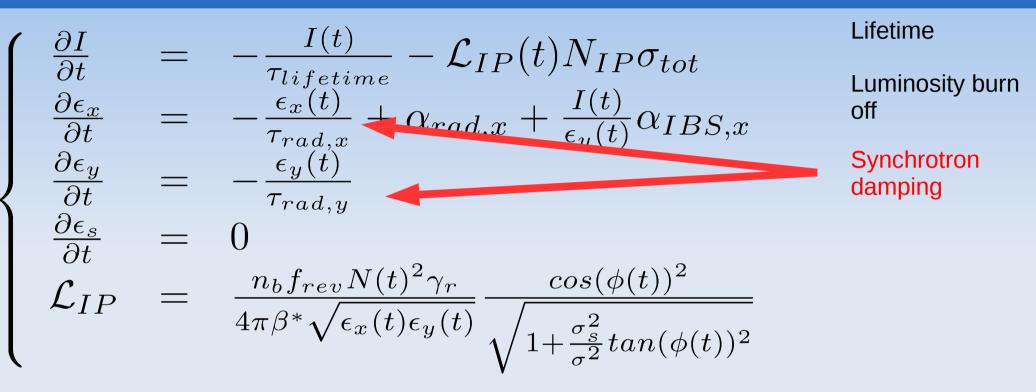
$$\frac{\partial I}{\partial t} = -\frac{I(t)}{\tau_{lifetime}} - \mathcal{L}_{IP}(t) N_{IP} \sigma_{tot}$$

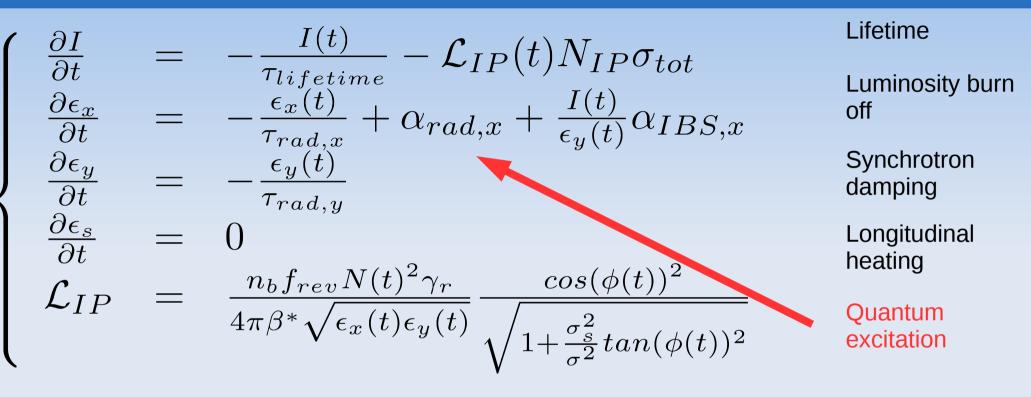
$$\frac{\partial \epsilon_x}{\partial t} = -\frac{\epsilon_x(t)}{\tau_{rad,x}} + \alpha_{rad,x} + \frac{I(t)}{\epsilon_y(t)} \alpha_{IBS,x}$$

$$\frac{\partial \epsilon_y}{\partial t} = -\frac{\epsilon_y(t)}{\tau_{rad,y}}$$

$$\frac{\partial \epsilon_s}{\partial t} = 0$$

$$\mathcal{L}_{IP} = \frac{n_b f_{rev} N(t)^2 \gamma_r}{4\pi \beta^* \sqrt{\epsilon_x(t)\epsilon_y(t)}} \frac{\cos(\phi(t))^2}{\sqrt{1 + \frac{\sigma_s^2}{\sigma^2} \tan(\phi(t))^2}}$$


$$\frac{\partial I}{\partial t} = -\frac{I(t)}{\tau_{lifetime}} \checkmark \Gamma(t) N_{IPO} tot \qquad \begin{array}{l} \cdot \text{Rest gas} \\ \cdot \text{Rest gas} \\ \cdot \text{Call of } \\ \frac{\partial \epsilon_x}{\partial t} = -\frac{\epsilon_x(t)}{\tau_{rad,x}} + \alpha_{rad,x} + \frac{I(t)}{\epsilon_y(t)} \alpha_{IBS,x} \\ \frac{\partial \epsilon_y}{\partial t} = -\frac{\epsilon_y(t)}{\tau_{rad,y}} \\ \frac{\partial \epsilon_s}{\partial t} = 0 \\ \mathcal{L}_{IP} = \frac{n_b f_{rev} N(t)^2 \gamma_r}{4\pi \beta^* \sqrt{\epsilon_x(t)\epsilon_y(t)}} \frac{\cos(\phi(t))^2}{\sqrt{1 + \frac{\sigma_s^2}{\sigma^2}} \tan(\phi(t))^2} \\ \end{array}$$



$$\begin{cases} \frac{\partial I}{\partial t} = -\frac{I(t)}{\tau_{lifetime}} - \mathcal{L}_{IP}(t) N_{IP} \sigma_{tot} & \text{Lifetime} \\ \frac{\partial \epsilon_x}{\partial t} = -\frac{\epsilon_x(t)}{\tau_{rad,x}} + \alpha_{rad,x} + \frac{I(t)}{\epsilon_y(t)} \alpha_{IBS,x} & \text{off} \\ \frac{\partial \epsilon_y}{\partial t} = -\frac{\epsilon_y(t)}{\tau_{rad,y}} & \text{Synchrotron} \\ \frac{\partial \epsilon_s}{\partial t} = 0 & \text{Longitudinal} \\ \mathcal{L}_{IP} = \frac{n_b f_{rev} N(t)^2 \gamma_r}{4\pi \beta^* \sqrt{\epsilon_x(t)\epsilon_y(t)}} \frac{\cos(\phi(t))^2}{\sqrt{1 + \frac{\sigma_s^2}{\sigma^2} tan(\phi(t))^2}} & \text{Quantum} \\ \end{cases}$$

$$\begin{cases} \frac{\partial I}{\partial t} = -\frac{I(t)}{\tau_{lifetime}} - \mathcal{L}_{IP}(t) N_{IP} \sigma_{tot} & \text{Lifetime} \\ \frac{\partial \epsilon_x}{\partial t} = -\frac{\epsilon_x(t)}{\tau_{rad,x}} + \alpha_{rad,x} + \frac{I(t)}{\epsilon_y(t)} \alpha_{IBS,x} & \text{Lifetime} \\ \frac{\partial \epsilon_y}{\partial t} = -\frac{\epsilon_y(t)}{\tau_{rad,y}} & \text{Synchrotron} \\ \frac{\partial \epsilon_s}{\partial t} = 0 & \text{Longitudinal} \\ \mathcal{L}_{IP} = \frac{n_b f_{rev} N(t)^2 \gamma_r}{4\pi \beta^* \sqrt{\epsilon_x(t)\epsilon_y(t)}} \frac{\cos(\phi(t))^2}{\sqrt{1 + \frac{\sigma_s^2}{\sigma^2} tan(\phi(t))^2}} & \text{Quantum} \\ \text{BS} \end{cases}$$

Geometric reduction Hourglass is neglected

$$\frac{\partial I}{\partial t} = -\frac{I(t)}{\tau_{lifetime}} - \mathcal{L}_{IP}(t) N_{IP} \sigma_{tot}$$

$$\frac{\partial \epsilon_x}{\partial t} = -\frac{\epsilon_x(t)}{\tau_{rad,x}} + \alpha_{rad,x} + \frac{I(t)}{\epsilon_y(t)} \alpha_{IBS,x}$$

$$\frac{\partial \epsilon_y}{\partial t} = -\frac{\epsilon_y(t)}{\tau_{rad,y}}$$

$$\frac{\partial \epsilon_s}{\partial t} = 0$$

$$\mathcal{L}_{IP} = \frac{n_b f_{rev} N(t)^2 \gamma_r}{4\pi \beta^* \sqrt{\epsilon_x(t)\epsilon_y(t)}} \frac{\cos(\phi(t))^2}{\sqrt{1 + \frac{\sigma_s^2}{\sigma^2} \tan(\phi(t))^2}}$$

Lifetime

Luminosity burn off

Synchrotron damping

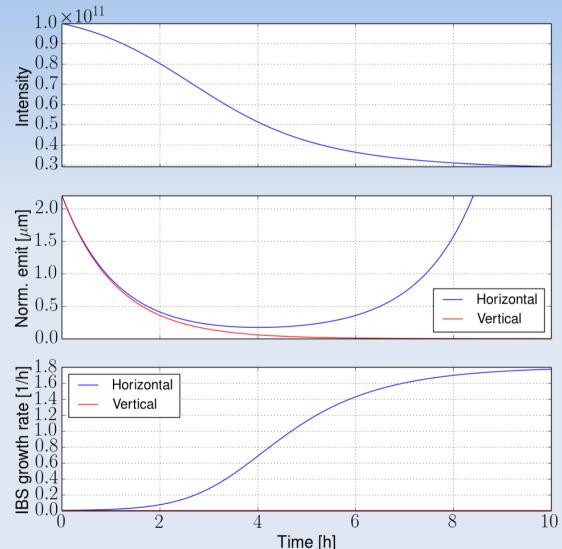
Longitudinal heating

Quantum excitation

IBS

Geometric reduction Hourglass is neglected

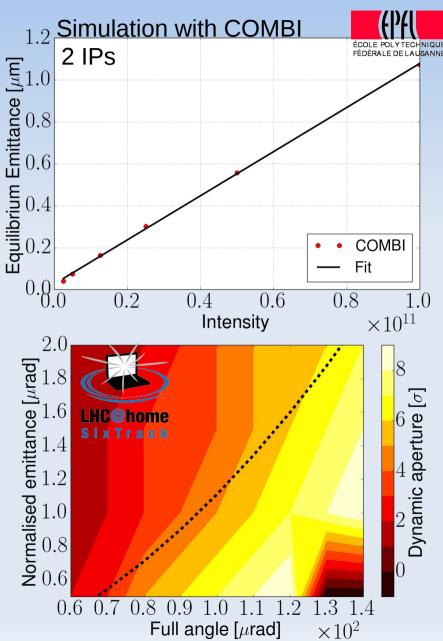
- The reduction of the transverse emittance will be limited by beambeam effects
 - Assume transverse heating from BB such that $\xi_{_{tot}} < 0.01$


- Radiation integrals computed with MAD-X (TOY lattice, 100km)
 - Energy loss per turn 4.2 [MeV/turn]
 - Emittance damping time : 1.1 [h]
 - Natural (normalized) emittance : 0.04 µm
 → 55 times smaller than the initial emittance
- Control of the longitudinal emittance is required to ensure the coherent stability
 - In the transverse plane, the coherent stability will be ensured by the amplitude detuning due to head-on beam-beam interactions
- All systems (instrumentation, cleaning, machine protection, ...) MUSt be designed to cope with the large range of transverse emittances

Intrabeam scattering

(FCC)

- Growth rate estimated with MAD-X (TOY lattice, 100 km)
- Negligible with initial beam parameters
- Overcomes synchrotron damping in the horizontal plane after few hours if the vertical emittance is uncontrolled
- The optimal scenario might rely on controlled, yet unequal emittances in the two planes
- Let us assume the vertical emittance is artificially blown up to keep round beams (External noise, coupling, ...)



Beam-beam interactions

- The equilibrium emittance will be limited by beam-beam effects
- Preliminary estimates yield $\xi_{lim} \sim 0.02$
 - Baseline assumes $\xi_{lim} \sim 0.01$
 - Ultimate assumes $\xi_{lim} \sim 0.03$
- Non-linearities of beam-beam interactions will limit the dynamic aperture
 - The crossing angle and β* could be adjusted during the fill according to the increased normalised physical aperture and increased dynamic aperture

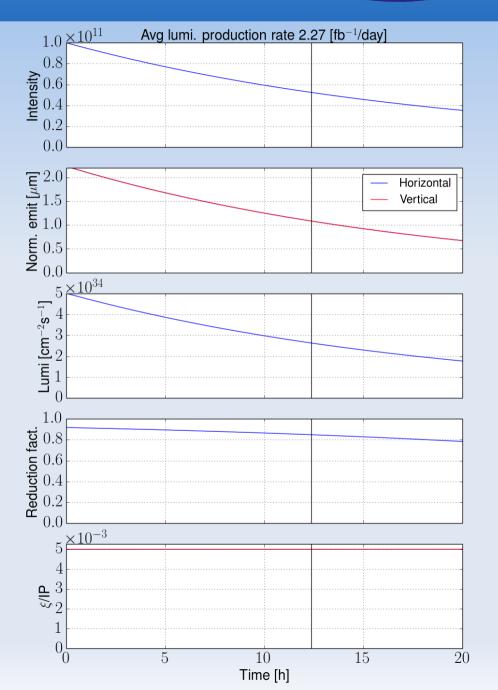
Luminosity levelling

• The nominal scenario foresee a limitation of the luminosity at $5 \cdot 10^{34}$ (Ultimate : $2 \cdot 10^{35}$)

β*	Transverse offset at the IP	Transverse emittance
 + Small β* reached with large aperture margin + Reduced long-range beam-beam effect + Flexible - Operationally difficult (Optics + collimation control) 	 + Easy to implement + Flexible (Reduction of the beambeam tune shift)* - Does not ensure coherent stability through head-on collision 	 + Easy to implement + Reduction of the beambeam tune shift + Reduced IBS - Non local

- A combination of the techniques should not be excluded, e.g. one could level the luminosity with the transverse emittance and reduce the β* once the equilibrium emittance is reached
 - \rightarrow The choice will depend on the limiting factors
- * Does not reduce beam-beam non-linearities \rightarrow could lead to similar equilibrium emittance as with head-on collision

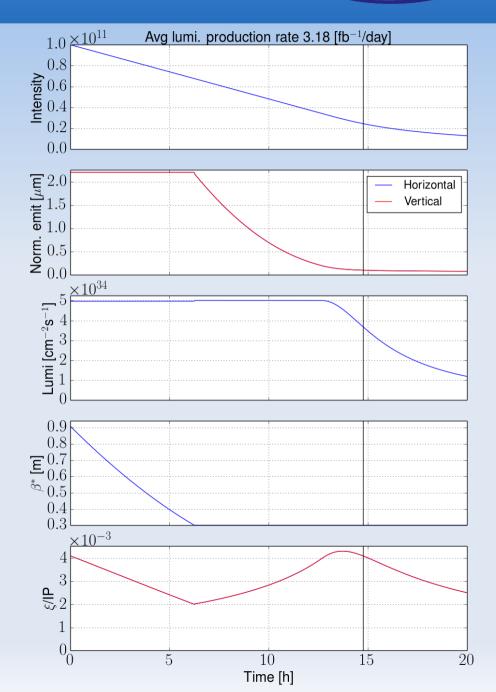
Nominal parameters


FCC hh ee he

Parameter	Nominal
Energy [TeV]	50
Length [km]	100
Bunch intensity [p]	10 ¹¹
Normalised emittance [µm]	2.2
Nb. bunches	10'600
Target luminosity [cm ⁻² s ⁻¹]	5·10 ³⁴
Bunch length [cm]	8
ξ_{tot}	0.01
Turn around [h]	5
Number of IPs	2
β* [m]	1.1
Long-range beam-beam separation [σ]	12

Nominal configuration (

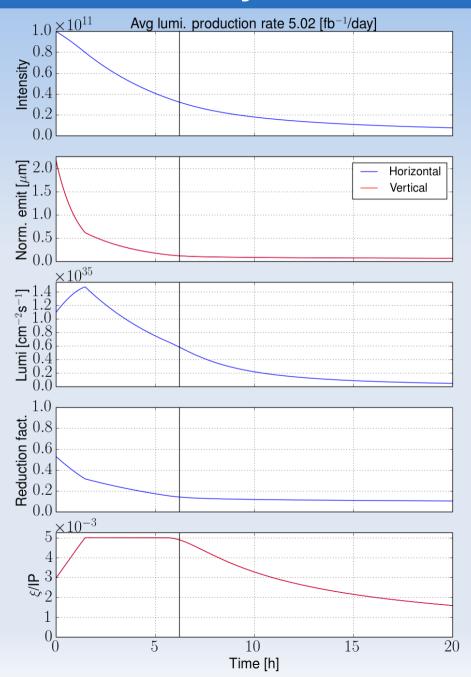
- Luminosity leveling is not required with nominal parameters
- Long fills needed (~12h)
 - → High reliability
- Limited by the maximum beam-beam tune shift



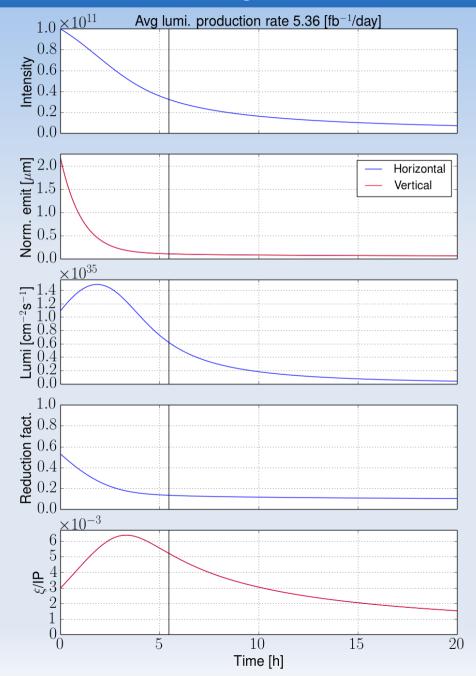
Nominal configuration (

- Luminosity leveling is not required with nominal parameters
- Long fills needed (~12h)

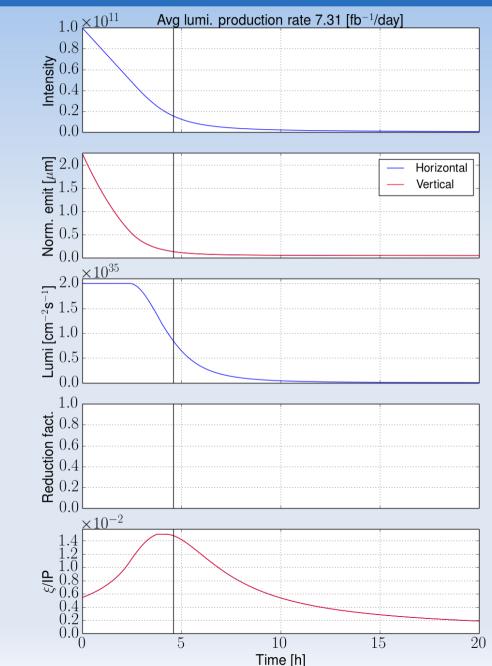
 \rightarrow High reliability

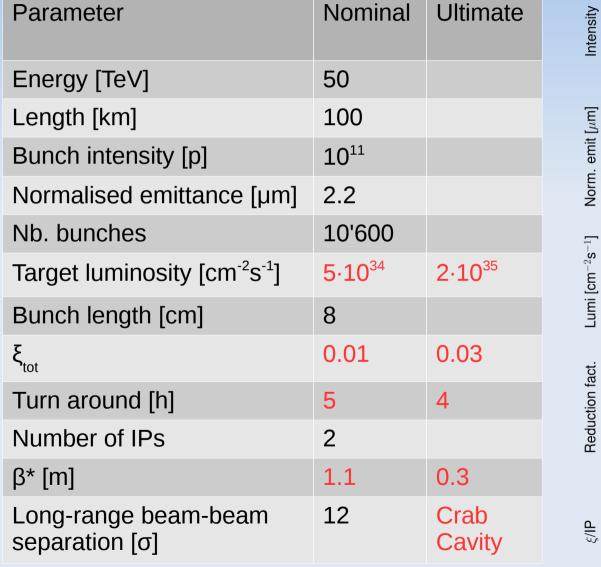

- Limited by the maximum beam-beam tune shift
 - \rightarrow reduce β^*
- Limited by the levelled luminosity

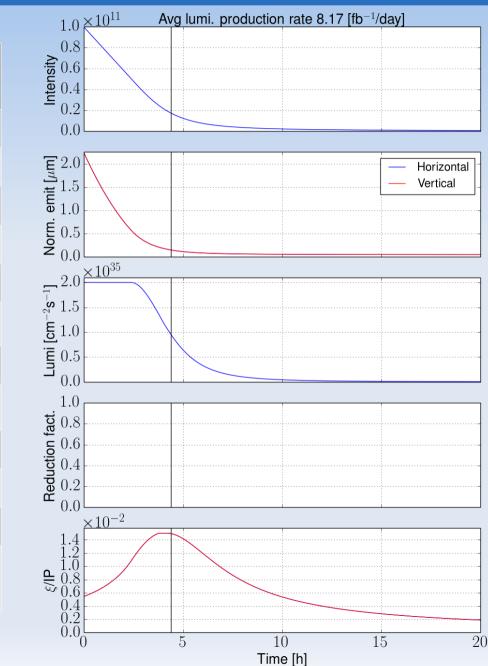
Nominal configuration


- Shorter fills thanks to the faster luminosity burn off
- Large reduction factor
 → Large Piwinski angle
- Limited by the beambeam tune shift

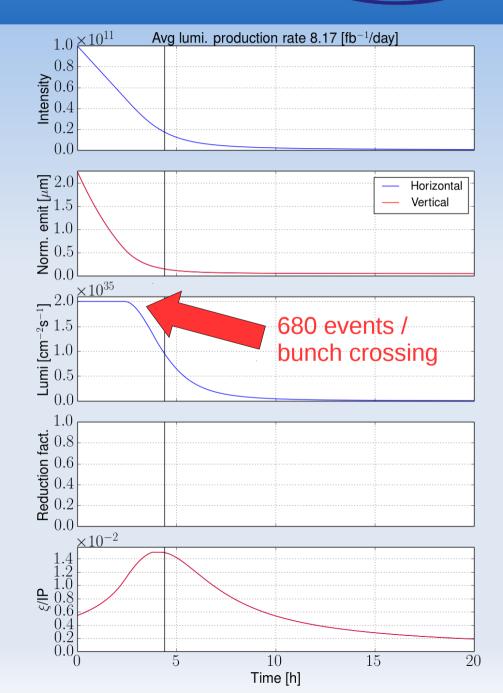
Nominal configuration


- Shorter fills thanks to the faster luminosity burn off
- Large reduction factor
 - → Large Piwinski angle
- Limited by the beambeam tune shift
 - \rightarrow Increase the limit (compensation?)


Nominal configuration

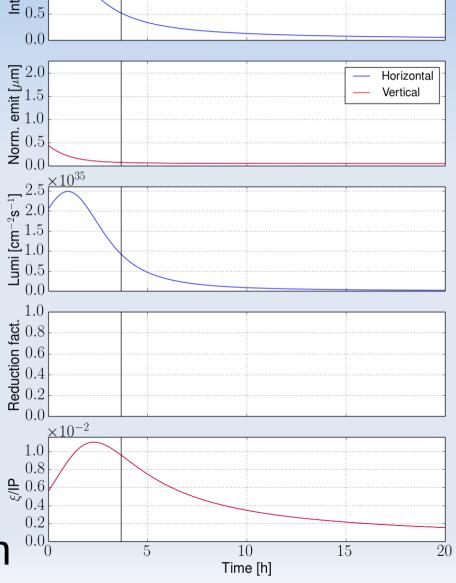

- Shorter fills thanks to the faster luminosity burn off
- Large reduction factor
 - → Large Piwinski angle
 - → Crab crossing
- Limited by the beambeam tune shift
 - \rightarrow Increase the limit (compensation?)
- Limited by the turn around time (5h)

Ultimate configuration (



Ultimate configuration (

Nominal 50	Ultimate
50	
100	
1011	
2.2	
10'600	
5·10 ³⁴	2·10 ³⁵
3	
0.01	0.03
5	4
2	
1.1	0.3
12	Crab Cavity
1 2 3 3 3 3 3 3 3 3 3 1	.0 ¹¹ 2.2 .0'600 5.10 ³⁴ 9.01

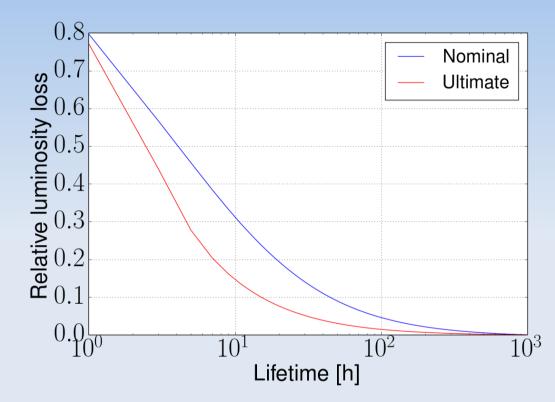


Ultimate 5 ns

			2.0×10^{10} Avg lumi. production rate 7.99 [fb ⁻¹ /day]
Parameter	Ultimate	Ultimate	
	25 ns	5 ns	
Energy [TeV]	50		1.5 1.0 0.5
Length [km]	100		0.0
Bunch intensity [p]	1011	2·10 ¹⁰	E 2.0 Horizontal 1.5 0 1.0
Normalised emittance [µm]	2.2	0.44	
Nb. bunches	10'600	53'000	во 0.5 0.0
Target luminosity [cm ⁻² s ⁻¹]	2·10 ³⁵	> 2·10 ³⁵	$\frac{2.5}{10^{20}}$
Bunch length [cm]	8		1.5 5 1.0
ξ_{tot}	0.03		2.5 5 2.0 1.5 1.0 0.5 0.0
Turn around [h]	4		1.0 ti 0.8
Number of IPs	2		8.0 generation 100 and
β* [m]	0.3		0.4 0.2
Long-range beam-beam separation [σ]	12 (CC)		$\begin{bmatrix} 0.0 \\ \times 10^{-2} \\ 1.0 \\ 0.8 \end{bmatrix}$
			€ 0.6

 Similar performance can be achieved with the 5 ns option

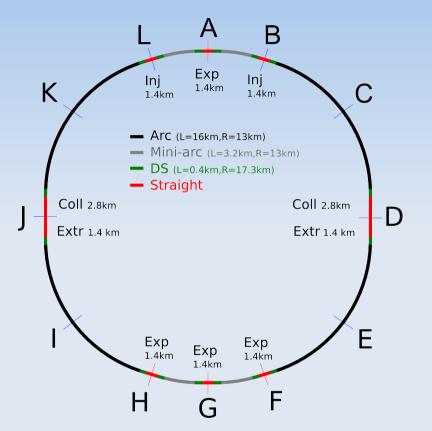
Performance



Configuration	Average luminosity production rate [fm ⁻¹ /day]	Integrated luminosity [fm ⁻¹]*
Nominal	2.3	8'050
+ lower β* (0.3 m)	3.2 (+39%)	11'200
+ Higher levelled luminosity (2·10 ³⁵ [cm-2/s-1])	5.0 (×2.1)	17'500
+ higher beam-beam tune shift (0.03)	5.4 (x2.3)	18'900
+ Crab crossing	7.3 (x3.2)	25'550
 + Shorter turn around (4h) → Ultimate 25 ns 	8.2 (x3.7)	28'700
Ultimate 5 ns	8.0 (x3.5)	28'000

* Assuming 25 years of run, with 140 effective days per year (D. Schulte @ FCC Week 2015)

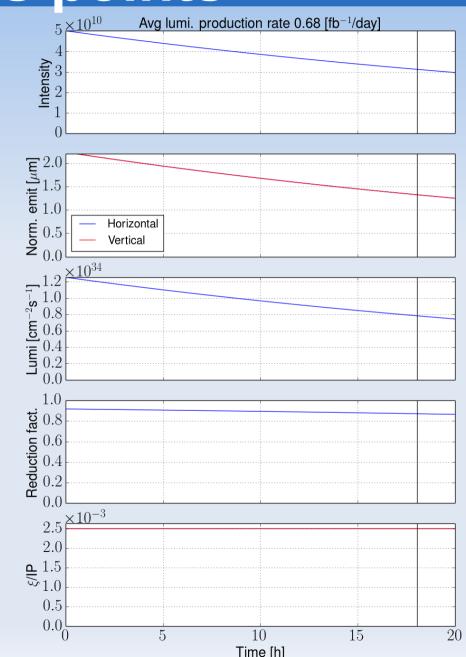
Effect of the lifetime



- A beam lifetime degradation due processes above 50 h reduces the performance by > 10%
 - Less critical in the ultimate scenario, due to the fast luminosity burn off

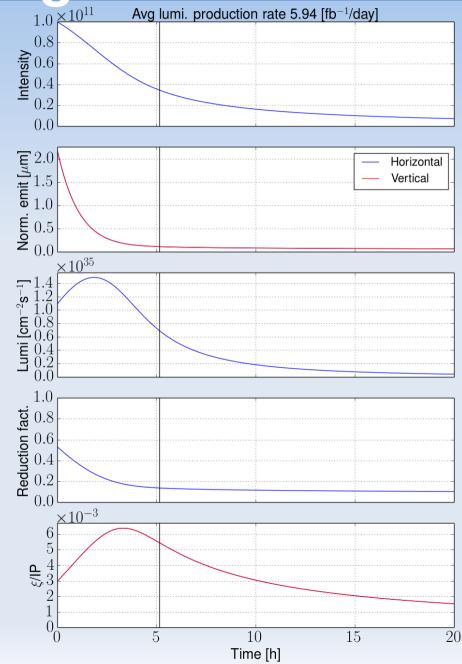
Effect of other interactions points

- The presence of lower luminosity experiments in Point H and F will :
 - Have a weak impact on the losses due to luminosity burn-off
 - Increase the total head-on beam-beam tune shift



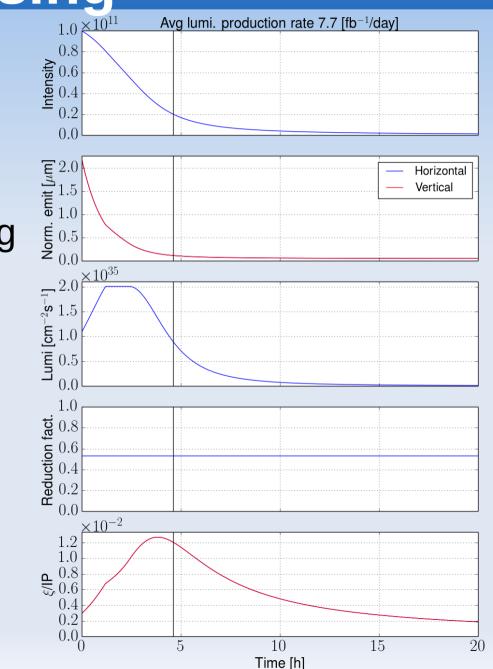
Effect of other interactions points

- The presence of lower luminosity experiments in Point H and F will :
 - Have a weak impact on the losses due to luminosity burn-off
 - Increase the total head-on beam-beam tune shift
 - \rightarrow Need to reduce the bunch intensity
 - \rightarrow x3.4⁻¹ reduction of the performance



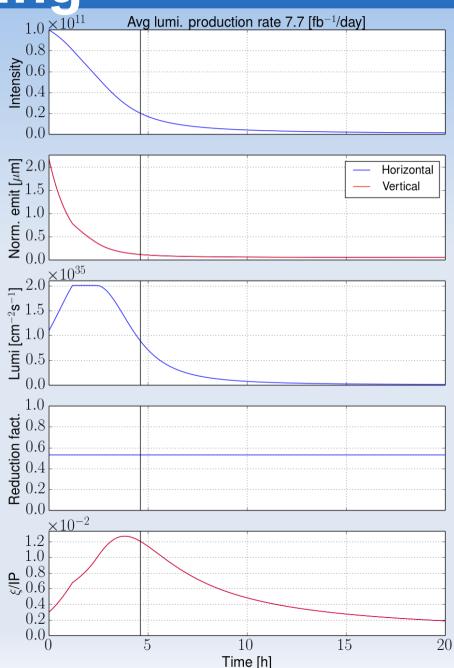
Effect of the crab crossing

 The ultimate configuration without crab crossing is limited by the geometric reduction factor



Effect of the crab crossing

- The ultimate configuration without crab crossing is limited by the geometric reduction factor
- One could adjust the crossing angle during the fill, keeping constant the normalised separation between the beams



Effect of the crab crossing

- The ultimate configuration without crab crossing is limited by the geometric reduction factor
- One could adjust the crossing angle during the fill, keeping constant the normalised separation between the beams
 - Only 6% difference in performance between the two scenarios

 \rightarrow The non-linear dynamic needs to be studied to fully assess both scenarios

- The nominal configuration is limited by the head-on beam-beam tune shift
 - Actual limit and compensation schemes need to be studied $(\xi_{tot}=0.034 \text{ achieved in the LHC*})$
- The nominal configuration rely on long fills (~ 12h), i.e. high reliability (6h in average for the LHC in 2012**)

* R. Alemany, et al, Head-on beam-beam tune shifts with high brightness beams in the LHC, CERN-ATS-Note-2011-029 MD **A. Macpherson, LHC Availability and Performance in 2012, Proceedings of the 2012 Evian Workshop on LHC Beam Operation

- The nominal configuration is limited by the head-on beam-beam tune shift
 - Actual limit and compensation schemes need to be studied $(\xi_{tot}=0.034 \text{ achieved in the LHC*})$
- The nominal configuration rely on long fills (~ 12h), i.e. high reliability (6h in average for the LHC in 2012**)
- The ultimate scenario is mainly limited by the turn around time
 - A scenario with 5 ns bunch spacing could provide a similar performance with a lower pile up

* R. Alemany, et al, Head-on beam-beam tune shifts with high brightness beams in the LHC, CERN-ATS-Note-2011-029 MD **A. Macpherson, LHC Availability and Performance in 2012, Proceedings of the 2012 Evian Workshop on LHC Beam Operation

- The nominal configuration is limited by the head-on beam-beam tune shift
 - Actual limit and compensation schemes need to be studied $(\xi_{tot}=0.034 \text{ achieved in the LHC*})$
- The nominal configuration rely on long fills (~ 12h), i.e. high reliability (6h in average for the LHC in 2012**)
- The ultimate scenario is mainly limited by the turn around time
 - A scenario with 5 ns bunch spacing could provide a similar performance with a lower pile up
- Assuming 2 runs of 5 years with nominal parameters and 3 with ultimate parameters, one integrates >~ 17'500 fm⁻¹

* R. Alemany, et al, Head-on beam-beam tune shifts with high brightness beams in the LHC, CERN-ATS-Note-2011-029 MD **A. Macpherson, LHC Availability and Performance in 2012, Proceedings of the 2012 Evian Workshop on LHC Beam Operation

- The nominal configuration is limited by the head-on beam-beam tune shift
 - Actual limit and compensation schemes need to be studied $(\xi_{tot}=0.034 \text{ achieved in the LHC*})$
- The nominal configuration rely on long fills (~ 12h), i.e. high reliability (6h in average for the LHC in 2012**)
- The ultimate scenario is mainly limited by the turn around time
 - A scenario with 5 ns bunch spacing could provide a similar performance with a lower pile up
- Assuming 2 runs of 5 years with nominal parameters and 3 with ultimate parameters, one integrates >~ 17'500 fm⁻¹
- The design need to take into account the slow, yet large, variation of the transverse emittance during the fill (Adaptive β* and crossing angle, collimation, beam instrumentation, beam stability, ...)

* R. Alemany, et al, Head-on beam-beam tune shifts with high brightness beams in the LHC, CERN-ATS-Note-2011-029 MD **A. Macpherson, LHC Availability and Performance in 2012, Proceedings of the 2012 Evian Workshop on LHC Beam Operation