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• Rest gas 
scattering
• Touschek
• Diffusion 
mechanisms
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Luminosity burn 
off
In the following :
 σ = 153•10-27 [cm-1]
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Model
Lifetime

Luminosity burn 
off

Synchrotron 
damping

Quantum 
excitation

IBS

Geometric reduction
Hourglass is neglected

Longitudinal 
heating

 The reduction of the transverse 
emittance will be limited by beam-
beam effects

 Assume transverse heating from BB 
such that ξ

tot
 < 0.01



  

Synchrotron radiation
 Radiation integrals computed with MAD-X     

(TOY lattice, 100km)

 Energy loss per turn 4.2 [MeV/turn]
 Emittance damping time : 1.1 [h]
 Natural (normalized) emittance : 0.04 μm                     

→ 55 times smaller than the initial emittance

 Control of the longitudinal emittance is required to 
ensure the coherent stability

 In the transverse plane, the coherent stability will be ensured 
by the amplitude detuning due to head-on beam-beam 
interactions

 All systems (instrumentation, cleaning, machine protection, ...) must 
be designed to cope with the large range of transverse 
emittances



  

Intrabeam scattering
 Growth rate estimated with 

MAD-X (TOY lattice, 100 km)

 Negligible with initial beam 
parameters

 Overcomes synchrotron 
damping in the horizontal plane 
after few hours if the vertical 
emittance is uncontrolled

 The optimal scenario might rely 
on controlled, yet unequal 
emittances in the two planes

 Let us assume the vertical 
emittance is artificially blown up 
to keep round beams (External 
noise, coupling, … )



  

Beam-beam 
interactions

 The equilibrium emittance will be 
limited by beam-beam effects

 Preliminary estimates yield 
ξ

lim
~0.02

 Baseline assumes ξ
lim

~0.01

 Ultimate assumes ξ
lim

~0.03

 Non-linearities of beam-beam 
interactions will limit the dynamic 
aperture

 The crossing angle and β* could 
be adjusted during the fill 
according to the increased 
normalised physical aperture and 
increased dynamic aperture

2 IPs
Simulation with COMBI



  

Luminosity levelling
 The nominal scenario foresee a limitation of the luminosity 

at 5·1034 (Ultimate : 2·1035)
β* Transverse offset at the IP Transverse emittance

+ Small β* reached with 
large aperture margin
+ Reduced long-range 
beam-beam effect
+ Flexible
- Operationally difficult 
(Optics + collimation 
control)

+ Easy to implement
+ Flexible
(Reduction of the beam-
beam tune shift)*
- Does not ensure 
coherent stability 
through head-on 
collision

+ Easy to implement
+ Reduction of the beam-
beam tune shift
+ Reduced IBS
- Non local

 A combination of the techniques should not be excluded, e.g. one 
could level the luminosity with the transverse emittance and reduce the β* 
once the equilibrium emittance is reached

→ The choice will depend on the limiting factors

* Does not reduce beam-beam non-linearities → could lead to similar equilibrium emittance 
as with head-on collision



  

Nominal parameters

Parameter Nominal

Energy [TeV] 50

Length [km] 100 

Bunch intensity [p] 1011

Normalised emittance [μm] 2.2 

Nb. bunches 10'600

Target luminosity [cm-2s-1] 5·1034 

Bunch length [cm] 8 

ξ
tot

0.01

Turn around [h] 5 

Number of IPs 2

β* [m] 1.1 

Long-range beam-beam 
separation [σ]

12 



  

Nominal configuration

 Luminosity leveling is not 
required with nominal 
parameters

 Long fills needed (~12h)

→ High reliability

 Limited by the maximum 
beam-beam tune shift



  

Nominal configuration

 Luminosity leveling is not 
required with nominal 
parameters

 Long fills needed (~12h)

→ High reliability

 Limited by the maximum 
beam-beam tune shift

→ reduce β*
 Limited by the levelled 

luminosity



  

Nominal configuration 
with higher instantaneous luminosity

 Shorter fills thanks to the 
faster luminosity burn off

 Large reduction factor

→ Large Piwinski angle

 Limited by the beam-
beam tune shift
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Nominal configuration
with higher instantaneous luminosity

 Shorter fills thanks to the 
faster luminosity burn off

 Large reduction factor

→ Large Piwinski angle

→ Crab crossing

 Limited by the beam-
beam tune shift

→ Increase the limit 
(compensation?)

 Limited by the turn 
around time (5h)



  

Ultimate configuration

Parameter Nominal Ultimate

Energy [TeV] 50

Length [km] 100 

Bunch intensity [p] 1011

Normalised emittance [μm] 2.2 

Nb. bunches 10'600

Target luminosity [cm-2s-1] 5·1034 2·1035

Bunch length [cm] 8 

ξ
tot

0.01 0.03

Turn around [h] 5 4

Number of IPs 2

β* [m] 1.1 0.3

Long-range beam-beam 
separation [σ]

12 Crab 
Cavity



  

Ultimate configuration

Parameter Nominal Ultimate

Energy [TeV] 50

Length [km] 100 

Bunch intensity [p] 1011

Normalised emittance [μm] 2.2 

Nb. bunches 10'600

Target luminosity [cm-2s-1] 5·1034 2·1035

Bunch length [cm] 8 

ξ
tot

0.01 0.03

Turn around [h] 5 4

Number of IPs 2

β* [m] 1.1 0.3

Long-range beam-beam 
separation [σ]

12 Crab 
Cavity

680 events / 
bunch crossing



  

Ultimate 5 ns

 Similar performance can be 
achieved with the 5 ns option

Parameter Ultimate 
25 ns

Ultimate 
5 ns

Energy [TeV] 50

Length [km] 100 

Bunch intensity [p] 1011 2·1010

Normalised emittance [μm] 2.2 0.44

Nb. bunches 10'600 53'000

Target luminosity [cm-2s-1] 2·1035 > 2·1035

Bunch length [cm] 8 

ξ
tot

0.03

Turn around [h] 4 

Number of IPs 2

β* [m] 0.3

Long-range beam-beam 
separation [σ]

12
(CC)



  

Performance

Configuration Average 
luminosity 
production 
rate [fm-1/day]

Integrated 
luminosity 
[fm-1]*

Nominal 2.3 8'050

 + lower β* (0.3 m) 3.2
(+39%)

11'200

 + Higher levelled luminosity
(2·1035 [cm-2/s-1])

5.0
(x2.1)

17'500

 + higher beam-beam tune shift 
(0.03)

5.4
(x2.3)

18'900

 + Crab crossing 7.3
(x3.2)

25'550

 + Shorter turn around (4h)
→ Ultimate 25 ns

8.2
(x3.7)

28'700

Ultimate 5 ns 8.0
(x3.5)

28'000

* Assuming 25 years of run, with 140 effective days per year (D. Schulte @ FCC Week 2015)



  

Effect of the lifetime

 A beam lifetime degradation due processes 
above 50 h reduces the performance by > 10%

 Less critical in the ultimate scenario, due to the fast 
luminosity burn off



  

Effect of other 
interactions points

 The presence of lower 
luminosity experiments 
in Point H and F will :

 Have a weak impact on the 
losses due to luminosity 
burn-off

 Increase the total head-on 
beam-beam tune shift



  

Effect of other 
interactions points

 The presence of lower 
luminosity experiments 
in Point H and F will :

 Have a weak impact on the 
losses due to luminosity 
burn-off

 Increase the total head-on 
beam-beam tune shift

→ Need to reduce the 
bunch intensity

→ x3.4-1 reduction of 
the performance



  

Effect of the crab 
crossing

 The ultimate configuration 
without crab crossing is 
limited by the geometric 
reduction factor
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Effect of the crab 
crossing

 The ultimate configuration 
without crab crossing is 
limited by the geometric 
reduction factor

 One could adjust the crossing 
angle during the fill, keeping 
constant the normalised 
separation between the 
beams

 Only 6% difference in 
performance between the two 
scenarios

→ The non-linear dynamic 
needs to be studied to fully 
assess both scenarios



  

Conclusion
 The nominal configuration is limited by the head-on beam-beam tune 

shift

 Actual limit and compensation schemes need to be studied 
(ξ

tot
=0.034 achieved in the LHC*)

 The nominal configuration rely on long fills (~ 12h), i.e. high reliability 
(6h in average for the LHC in 2012**)

* R. Alemany, et al, Head-on beam-beam tune shifts with high brightness beams in the LHC, CERN-ATS-Note-2011-029 MD
**A. Macpherson, LHC Availability and Performance in 2012, Proceedings of the 2012 Evian Workshop on LHC Beam Operation
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Conclusion
 The nominal configuration is limited by the head-on beam-beam tune 

shift

 Actual limit and compensation schemes need to be studied 
(ξ

tot
=0.034 achieved in the LHC*)

 The nominal configuration rely on long fills (~ 12h), i.e. high reliability 
(6h in average for the LHC in 2012**)

 The ultimate scenario is mainly limited by the turn around time

 A scenario with 5 ns bunch spacing could provide a similar 
performance with a lower pile up

 Assuming 2 runs of 5 years with nominal parameters and 3 with 
ultimate parameters, one integrates >~ 17'500 fm-1

 The design need to take into account the slow, yet large, variation of 
the transverse emittance during the fill (Adaptive β* and crossing angle, 
collimation, beam instrumentation, beam stability, ...)

* R. Alemany, et al, Head-on beam-beam tune shifts with high brightness beams in the LHC, CERN-ATS-Note-2011-029 MD
**A. Macpherson, LHC Availability and Performance in 2012, Proceedings of the 2012 Evian Workshop on LHC Beam Operation
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