CP VIOLATION IN HIGGS DECAYS [το ττ]

Felix Yu Johannes Gutenberg University, Mainz

Roni Harnik, Adam Martin, Takemichi Okui, Reinard Primulando, FY Phys. Rev. D88 (2013) 076009 [arxiv: 1308.1094 [hep-ph]]

FCC-ee: Precision Measurements FCC Week, January 21, 2015

CP Violation – Motivated and Required

- Sakharov's three conditions for baryogenesis motivate searches for new sources of CP violation
 - Need B violation
 - Need C and CP violation
 - Need interactions to happen out of thermal equilibrium
- Our picture of baryogenesis is embarrassingly incomplete
 - SM EW baryogenesis is insufficient
 - Strongly motivates new sources of CPV

CP and the Higgs

- A natural place to test for CP violating phases is with Higgs physics
 - scalar-pseudoscalar admixture (e.g. scalar potential)
 - naïvely tested via rate suppression
 - couplings to gauge bosons (e.g. bosonic CPV)
 - for example, tested via acoplanarity measurement in $h\rightarrow ZZ^*\rightarrow 4I$
 - couplings to fermions (e.g. fermionic CPV)
 - our focus: test via h \rightarrow τ^+ $\tau^- \rightarrow (\rho^+ \nu) (\rho^- \nu) \rightarrow (\pi^+ \pi^0) \nu (\pi^- \pi^0) \nu$
- [Full UV models to connect any given CP phase to a baryogenesis mechanism is BTSOTW]

Outline

- Brief review of current status of Higgs CP properties
- Motivate new measurement in $\tau^+\tau^-$ decay channel
- Sensitivity studies at lepton collider
- Summary

Current Higgs proportionality measurements

- These rate measurements only tell half of the story
 - Must also test phases (and higher order moments via Higgs EFT)
 ATLAS-CONF-2015-007 CMS [1412.8662]

Testing CPV in Higgs decays to

(electroweak) gauge bosons

- For ZZ*, measure acoplanarity angle Φ (angle between Z₁ and Z₂ decay planes)
- Golden channel
 - Everything
 measureable, can
 reconstruct the
 Higgs rest frame
 and appropriate
 decay planes

Testing CPV in h→VV*

- Can perform likelihood test between 0⁺ and 0⁻ or other alternative spin hypotheses
 - Can also test different tensor structures

ATLAS-CONF-2015-008 See also CMS [1411.3441] in backup

Tested Hypothesis	$p_{exp,\mu=1}^{ALT}$	$p_{exp,\mu=\hat{\mu}}^{ALT}$	p_{obs}^{SM}	p_{obs}^{ALT}	Obs. CL_S (%)
O_h^+	$2.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	0.85	$7.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-2}$
0	$1.8 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$	0.88	$< 3.1 \cdot 10^{-5}$	$< 2.6 \cdot 10^{-2}$
2+	$4.3 \cdot 10^{-3}$	$2.9 \cdot 10^{-4}$	0.61	$4.3 \cdot 10^{-5}$	$1.1 \cdot 10^{-2}$
$2^+(\kappa_q = 0; p_{\rm T} < 300)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.52	$< 3.1 \cdot 10^{-5}$	$< 6.5 \cdot 10^{-3}$
$2^+(\kappa_q = 0; p_{\rm T} < 125)$	$3.4 \cdot 10^{-3}$	$3.9 \cdot 10^{-4}$	0.71	$4.3 \cdot 10^{-5}$	$1.5 \cdot 10^{-2}$
$2^+(\kappa_q = 2\kappa_g; p_T < 300)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.28	$< 3.1 \cdot 10^{-5}$	$< 4.3 \cdot 10^{-3}$
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125)$	$7.8 \cdot 10^{-3}$	$1.2\cdot 10^{-3}$	0.80	$7.3 \cdot 10^{-5}$	$3.7 \cdot 10^{-2}$

Testing "fermionic" CPV

- The BSM origin of a CPV phase in SM Yukawa couplings is distinct from possible phases in the scalar potential or pseudoscalar couplings to gauge bosons
 - Motivates CPV tests in fermionic couplings even if bosonic CPV coupling tests give null results
 - For example, new fermions which mix with SM fermions could introduce explicit phases in the Yukawa sector

Testing "fermionic" CPV with Higgs

 The tau decay channel for the Higgs is the most promising system for direct measurement of fermionic CPV couplings

- Top coupling only probed via loops or ttH (tH) production
- Bottom quark polarizations generally washed out by QCD
- Tau channel suffer from lost information via neutrinos (at hadron colliders), but still have an appreciable rate
 - Neutrinos are reconstructable at lepton colliders for particular tau decays

M _H = 126 GeV	SM Br
bb	56.1%
WW*	23.1%
gg	8.48%
ττ	6.16%
ZZ*	2.89%
СС	2.83%
γγ	0.228%
Ζγ	0.162%
μμ	0.0214%

A Tau Yukawa CPV phase

 A new tau Yukawa phase can be captured by considering the Lagrangian

$$\mathcal{L}_{\text{pheno}} \supset -m_{\tau} \,\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}} \,h\bar{\tau}(\cos\Delta + i\gamma_{5}\sin\Delta)\tau$$

$$= -m_{\tau} \,\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}} \,h(\tau_{\text{\tiny L}}^{\dagger}(\cos\Delta + i\sin\Delta)\tau_{\text{\tiny R}} + \text{c.c.}),$$

- $-\Delta = 0$ is SM (CP-even)
- $-\Delta = \pi/2$ is pure CP-odd (and CP conserving)
- $-\Delta = \pm \pi/4$ is maximally CP-violating
- $-\Delta$ is currently unconstrained
- We will assume the y_T magnitude is SM strength

A CPV Observable

- Need to minimize lost information from missing neutrinos
 - Leptonic decays, though clean, lose even more information
- Need an intermediate vector (not scalar) in the tau decay: focus on the ρ vector meson
 - $-\operatorname{Br}(\tau^+ \to \rho^+ v) \approx 26\%$
 - $-\operatorname{Br}(\rho^+ \to \pi^+ \pi^0) \approx 100\%$

Extracting the phase in Higgs decays

- Tau Yukawa CPV is imprinted on the tau polarizations relative to each other
 - Tau polarizations then get imprinted on the ν and ρ , ρ polarization is imparted to the πs
- Simplest observable (appropriate for LHC) is $\rho^+\rho^-$ acoplanarity angle
- New, better observable (appropriate for e⁺e⁻ collider) is Θ

$$h \longrightarrow \tau^{-}\tau^{+}$$

$$\longrightarrow \rho^{-}\nu_{\tau} \rho^{+}\bar{\nu}_{\tau}$$

$$\longrightarrow \pi^{-}\pi^{0} \nu_{\tau} \pi^{+}\pi^{0} \bar{\nu}_{\tau}.$$

Matrix element calculation

 Can trace how the CP phase Δ appears in the squared matrix element by treating the Higgs decay as a sequence of on-shell 2-body decays

$$\mathcal{M}_{h \to \tau \tau} \propto \sum_{s,s'} \chi_{s,s'} \, \bar{u}_{\tau^{-}}^{s} \left(\cos \Delta + i \gamma_{5} \sin \Delta\right) v_{\tau^{+}}^{s'}$$

$$\mathcal{M}_{\tau \to \rho \nu} \propto \left(\epsilon_{\rho^{-}}^{*}\right)_{\mu} \, \bar{u}_{\nu_{\tau}} \gamma^{\mu} P_{L} \, u_{\tau^{-}}$$

$$\mathcal{M}_{\rho \to \pi \pi} \propto \epsilon_{\rho^{-}} \cdot \left(p_{\pi^{-}} - p_{\pi^{0}}\right)$$

Together, gives

$$\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^{-}} (\not p_{\pi^{-}} - \not p_{\pi^{0-}}) P_{\text{L}} (\not p_{\tau^{-}} + m_{\tau}) \\ \times (\cos \Delta + i\gamma_{5} \sin \Delta) \\ \times (-\not p_{\tau^{+}} + m_{\tau}) (\not p_{\pi^{+}} - \not p_{\pi^{0+}}) P_{\text{L}} v_{\nu^{+}}$$

The Theta Variable*

$$\Theta = \operatorname{sgn}\left[\vec{v}_{\tau^{+}} \cdot (\vec{E}_{-} \times \vec{E}_{+})\right] \operatorname{Arccos}\left[\frac{\vec{E}_{+} \cdot \vec{E}_{-}}{|\vec{E}_{+}||\vec{E}_{-}|}\right]$$

$$P_{\Delta, S} = -2e^{i(2\Delta - \Theta)} |\vec{E}_{+}||\vec{E}_{-}|$$

• In the Higgs rest frame, the "electric" components

 If neutrinos were measured, we would have complete information to reconstruct tau momentum, tau and Higgs rest frames

Ideal situation

Ideal – compare to ρ⁺ρ⁻ acoplanarity*

Lepton collider possibilities

- We obviously cannot directly measure neutrino momenta
- At a lepton collider, have enough constraints to solve algebraically for neutrino momenta
 - Have two neutrino momenta solution sets
 - Both solutions give correct Higgs mass
 - Weight each solution by half an event
 - Necessarily require visible Z decay
 - Finite resolution on different Z decay channels will moderate the Θ distribution

Lepton collider – reconstructed

Lepton collider – reconstructed

Lepton collider possibilities

- For √s = 250 GeV FCCee, Zh production is about
 0.21 pb
 - FCC signal yield (using SM Br(h \rightarrow ττ) and restricting to visible Z decays) is about 700 events with 1 ab⁻¹
 - Restricting to $Z \rightarrow ee$, $\mu\mu$ decays gives about 60 events
 - Hadronic Z decays will help CPV study statistics at price of worse resolution
 - Construct binned likelihood using a sinuisoidal fit to signal, determine sensitivity by variation of test Δ

$$L = \frac{\prod_{i=1}^{N} \operatorname{Pois} \left(B_i + S_i^{\Delta=0} | B_i + S_i^{\Delta=\delta} \right)}{\prod_{i=1}^{N} \operatorname{Pois} \left(B_i + S_i^{\Delta=0} | B_i + S_i^{\Delta=0} \right)}$$

Luminosity scaling (without systematics)

Luminosity scaling (without systematics)

Lepton Collider Prospects

- Systematics will affect high luminosity estimates
- Expect some sensitivity losses from detector resolution, charged and neutral pion efficiency
 - Reconstructing neutrino momenta is equivalent to knowing the rest frames of the Higgs and tau daughters
- Also expect a NP model giving a nonzero CP phase could enhance Br(h →ττ)

Colliders	LHC	HL-LHC	FCCee (1 ab ⁻¹)	FCCee (5 ab ⁻¹)	FCCee (10 ab ⁻¹)
$\overline{\text{Accuracy}(1\sigma)}$	25°	8.0°	5.5°	2.5°	1.7°

Summary

- New CP phases are strongly motivated from general baryogenesis arguments
- Many physics studies are needed to motivate and enhance the physics case of future machines
- Have a new suite of measurements to perform in Higgs physics
 - Fermionic CP phases play a special role
 - Should have some sensitivity with LHC and HL-LHC
 - Precision measurement possible with FCCee

Colliders	LHC	HL-LHC	FCCee (1 ab ⁻¹)	FCCee (5 ab ⁻¹) FCCee (10 ab ⁻¹)
$\overline{\text{Accuracy}(1\sigma)}$	25°	8.0°	5.5°	2.5°	1.7°

Admixture constraints from signal strengths

[Separate channels cannot be combined without assumptions!]

 \sqrt{s} = 8 TeV, 20.3 fb⁻¹

Signal strength (μ)

Testing CPV in Higgs decays to

(electroweak) gauge bosons

- Using Higgs EFT, assuming spin-0, write dimension-6 operators for scalar coupling to dibosons
- Perform simultaneous fit to coefficients of non-SM coupling structures based on differential distribution

$$\begin{split} L(HVV) &\sim a_1 \frac{m_Z^2}{2} H Z^{\mu} Z_{\mu} + \frac{1}{(\Lambda_1)^2} m_Z^2 H Z_{\mu} \Box Z^{\mu} - \frac{1}{2} a_2 H Z^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_3 H Z^{\mu\nu} \tilde{Z}_{\mu\nu} \\ &+ a_1^{WW} \frac{m_W^2}{2} H W^{\mu} W_{\mu} + \frac{1}{(\Lambda_1^{WW})^2} m_W^2 H W_{\mu} \Box W^{\mu} - \frac{1}{2} a_2^{WW} H W^{\mu\nu} W_{\mu\nu} - \frac{1}{2} a_3^{WW} H W^{\mu\nu} \tilde{W}_{\mu\nu} \\ &+ \frac{1}{(\Lambda_1^{Z\gamma})^2} m_Z^2 H Z_{\mu} \partial_{\nu} F^{\mu\nu} - a_2^{Z\gamma} H F^{\mu\nu} Z_{\mu\nu} - a_3^{Z\gamma} H F^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{1}{2} a_2^{\gamma\gamma} H F^{\mu\nu} F_{\mu\nu} - \frac{1}{2} a_3^{\gamma\gamma} H F^{\mu\nu} \tilde{F}_{\mu\nu}, \end{split}$$

Can also test spin-2

Testing CPV in $h \rightarrow ZZ^* - CMS$

Electroweak diboson results

Thus far, measurements consistent with SM

• $f_{a3} = 1$ excluded at 99.98% CL

 $f_{a3} < 0.43$ (0.40) at a 95% CL for the positive (negative) phase

CMS [1411.3441] 29

The $h \rightarrow \tau^+ \tau^-$ experimental status

Both experiments have evidence and are actively

searching in all τ decay modes

A Tau Yukawa CPV phase

 From an effective field theory perspective, can readily generate a tau Yukawa phase via the addition of a dimension 6 operator

$$\mathcal{L}_{\text{eff}} \supset -\left(\alpha + \beta \frac{H^{\dagger} H}{\Lambda^2}\right) H \ell_{3L}^{\dagger} \tau_{R} + \text{c.c.}$$

- $-\alpha$ and β are generally complex
- After inserting Higgs vevs, use the τ_R redefinition to get

$$\alpha + \beta \frac{v^2}{\Lambda^2} = y_{\tau}^{SM} > 0,$$

– Then, the Higgs coupling to taus is $y_{ au}^{\mathrm{SM}}+2etarac{v^{2}}{\sqrt{2}}$

$$y_{\tau}^{\text{SM}} + 2\beta \frac{v^2}{\Lambda^2}$$

UV completion

$$\mathcal{L}_{\text{tree}} = \mathcal{L}_{\text{SM}-y_{\tau}}$$

$$+ |D\Phi|^{2} - m_{\Phi}^{2} |\Phi|^{2} - \lambda_{\Phi} |\Phi|^{4}$$

$$- (yH\ell_{3L}^{\dagger} \tau_{R} + y'\Phi\ell_{3L}^{\dagger} \tau_{R} + \lambda'(\Phi^{\dagger}H)|H|^{2} + \text{c.c.}),$$
(A1)

$$\mathcal{L}_{\text{dim-6}} = \frac{|\lambda'|^2}{m_{\Phi}^2} |H|^6 + \left(\frac{\lambda' y'}{m_{\Phi}^2} |H|^2 H \ell_{3L}^{\dagger} \tau_{R} + \text{c.c.}\right).$$

Matrix element calculation assumptions

$$\mathcal{M}_{\text{full}} \propto \bar{u}_{\nu^{-}} (\not p_{\pi^{-}} - \not p_{\pi^{0-}}) P_{\text{L}} (\not p_{\tau^{-}} + m_{\tau}) \\ \times (\cos \Delta + i\gamma_{5} \sin \Delta) \\ \times (-\not p_{\tau^{+}} + m_{\tau}) (\not p_{\pi^{+}} - \not p_{\pi^{0+}}) P_{\text{L}} v_{\nu^{+}}$$

- Neglect π^0 exchange (spatially separated; the τ 's are boosted and back-to-back in the Higgs rest frame)
- All intermediate particles assumed on-shell
- Neglect π^{\pm} – π^{0} mass difference
- Obtain $\mathcal{M}_{\mathrm{full}} \propto \bar{u}_{\nu^-} \not q_- \left(\mathrm{e}^{\mathrm{i}\Delta} \not p_{\tau^-} \mathrm{e}^{-\mathrm{i}\Delta} \not p_{\tau^+} \right) \not q_+ P_{\scriptscriptstyle \mathrm{L}} v_{\nu^+}$ with $q_\pm \equiv p_{\pi^\pm} p_{\pi^{0\pm}}$
 - Recall ρ_{\pm} polarization is generally aligned with q_{\pm}

Calculating the Theta Variable

Introduce the variable $k_{+}^{\mu} \equiv y_{\pm} q_{+}^{\mu} + r p_{\nu \pm}^{\mu}$

with coefficients
$$y_{\pm} \equiv \frac{2q_{\pm} \cdot p_{\tau^{\pm}}}{m_{\tau}^2 + m_{\rho}^2} = \frac{q_{\pm} \cdot p_{\tau^{\pm}}}{p_{\rho^{\pm}} \cdot p_{\tau^{\pm}}},$$
 $r \equiv \frac{m_{\rho}^2 - 4m_{\pi}^2}{m_{\tau}^2 + m_{\rho}^2} \approx 0.14.$

We then write the squared matrix element as

$$|\mathcal{M}|^2 \propto P_{\Delta,S} + P_{\Delta,S} + P_{\Delta,S} + P_{\Delta,S}$$

where the most interesting piece is

$$P_{\Delta, S} \equiv -e^{2i\Delta} \left[(k_{-} \cdot p_{\tau^{+}})(k_{+} \cdot p_{\tau^{-}}) - (p_{\tau^{-}} \cdot p_{\tau^{+}})(k_{-} \cdot k_{+}) - i\epsilon_{\mu\nu\rho\sigma} k_{-}^{\mu} p_{\tau^{-}}^{\nu} k_{+}^{\rho} p_{\tau^{+}}^{\sigma} \right].$$
 (26)

Calculating the Theta Variable

$$P_{\Delta, S} \equiv -e^{2i\Delta} \left[(k_{-} \cdot p_{\tau^{+}})(k_{+} \cdot p_{\tau^{-}}) - (p_{\tau^{-}} \cdot p_{\tau^{+}})(k_{-} \cdot k_{+}) - i\epsilon_{\mu\nu\rho\sigma} k_{-}^{\mu} p_{\tau^{-}}^{\nu} k_{+}^{\rho} p_{\tau^{+}}^{\sigma} \right].$$
 (26)

We can define an antisymmetric 2nd-rank tensor

$$F_{\pm}^{\mu\nu} \equiv k_{\pm}^{\mu} p_{\tau\pm}^{\nu} - k_{\pm}^{\nu} p_{\tau\pm}^{\mu} = -F_{\pm}^{\nu\mu}$$

$$P_{\Delta, S} = e^{2i\Delta} \left(\frac{1}{2} F_{-\mu\nu} F_{+}^{\mu\nu} + \frac{i}{4} \epsilon_{\mu\nu\rho\sigma} F_{-}^{\mu\nu} F_{+}^{\rho\sigma} \right)$$

Or, even better, identify "electric" and "magnetic"

components
$$E^i_{\pm} \equiv F^{i0}_{\pm}$$
, $B^i_{\pm} \equiv -\frac{1}{2} \epsilon^{ijk} F_{\pm jk}$

$$P_{\Delta, S} = -e^{2i\Delta} [(\vec{E}_{-} + i\vec{B}_{-}) \cdot (\vec{E}_{+} + i\vec{B}_{+})]$$

Calculating the Theta Variable

$$F_{\pm}^{\mu\nu} \equiv k_{\pm}^{\mu} p_{\tau^{\pm}}^{\nu} - k_{\pm}^{\nu} p_{\tau^{\pm}}^{\mu} = -F_{\pm}^{\nu\mu}$$

We can calculate

$$\vec{B}_{\pm} = \vec{p}_{\tau^{\pm}} \times \vec{k}_{\pm} = \vec{v}_{\tau^{\pm}} \times \vec{E}_{\pm}$$

- Specialize to Higgs rest frame (back-to-back taus)
 - E₊B₊ and E₋B₋ planes are parallel
 - Motivate a new acoplanarity
 between E₊v₊ and E₋v₋ planes

$$\Theta = \operatorname{sgn}\left[\vec{v}_{\tau^{+}} \cdot (\vec{E}_{-} \times \vec{E}_{+})\right] \operatorname{Arccos}\left[\frac{\vec{E}_{+} \cdot \vec{E}_{-}}{\left|\vec{E}_{+}\right| \left|\vec{E}_{-}\right|}\right]$$

$$P_{\Delta,S} = -2e^{i(2\Delta - \Theta)} |\vec{E}_+| |\vec{E}_-|$$

Yields for 3 ab⁻¹ LHC

Tau measurement details

 Method relies on reconstructing neutral and charged pions with good resolution and efficiency

Measuring Higgs to TT

- Use SVFit to reconstruct $m_{\tau\tau}$ (creates likelihood function based on observed kinematics)
 - Anticipating the CP phase measurement, focus on the fully hadronic analysis

39

Measuring Higgs to TT

- Use SVFit to reconstruct m₊₊ (creates likelihood) function based on observed kinematics)
 - Anticipating the CP phase measurement, focus on the

fully hadronic analysis

Process	1-Jet	VBF
$Z \rightarrow au au$	428 ± 90	47 ± 28
QCD	210 ± 31	61 ± 10
EWK	41 ± 9	4 ± 1
t t	29 ± 6	2 ± 2
Total Background	709 ± 95	114 ± 30
$H \rightarrow \tau \tau$	9 ± 4	4 ± 2
Observed	718	120

Signal Eff.

$gg \rightarrow H$	$2.52 \cdot 10^{-4}$	$4.99 \cdot 10^{-5}$
$qq \rightarrow H$	$5.93 \cdot 10^{-4}$	$1.20 \cdot 10^{-3}$
$qq \rightarrow Ht\bar{t}$ or VH	$9.13 \cdot 10^{-4}$	$3.59 \cdot 10^{-5}$

Combined: $\mu = 1.1 \pm 0.4$

ILC, FCCee, CEPC comparison

- For Vs = 250 GeV ILC, polarized beams, Zh production is about 0.30 pb
- With unpolarized beams (FCC-ee or CEPC), cross section is about 30% less
- ILC signal yield (using SM Br(h $\rightarrow \tau\tau$) and restricting to visible Z decays) is 990 events with 1 ab⁻¹

luminosity

$\sigma_{e^+e^- o hZ}$	0.30 pb
$Br(h \to \tau^+ \tau^-)$	6.1%
$Br(\tau^- \to \pi^- \pi^0 \nu)$	26%
$Br(Z \to visibles)$	80%
$N_{ m events}$	990

LHC prospects

- Consider h+j events ("boosted" $\tau_{had}\tau_{had}$ sample)
- At the LHC, need to approximate neutrino momenta
 - Have (8-2-2-2=) 2 unknown four-momentum components
 - Will use collinear approximation for neutrino momenta
 - In this approximation, Θ is identical to ρρ acoplanarity angle
 - Other approximations considered tended to wash out or distort the sinuisoidal shape of the Θ distribution
 - First proposal to measure Δ at the LHC with prompt tau decays and kinematics

Ideal vs. Collinear approximation

LHC14 simulation details

- Use MadGraph5 for h+j and Z+j events at LHC14
 - Mimic cuts for 1-jet, hadronic taus Higgs search category
 - Impose preselection of $p_T(j) > 140 \text{ GeV}$, $|\eta(j)| < 2.5$
 - Normalize to MCFM NLO $\sigma(h+j)=2.0$ pb, $\sigma(Z+j)=420$ pb
 - No pileup or detector simulation, aside from tau-tagging efficiencies
 - Pileup degrades primary vertex determination for charged pion tracks and adds ECAL deposits that reduce neutral pion resolution
 - Tracking and detector resolution will clearly smear the Θ distribution

Yields for 3 ab⁻¹ LHC

Signal region:

MET > 40 GeV,
$$p_T(\rho)$$
 > 45 GeV, $|\eta(\rho)|$ < 2.1, m_{coll} > 120 GeV

 Inject an additional 10% contribution to (flat) Zj background to account for QCD multijets

	h j	Zj
Inclusive σ	$2.0~\mathrm{pb}$	420 pb
$Br(\tau^+\tau^- decay)$	6.1%	3.4%
$Br(\tau^- \to \pi^- \pi^0 \nu)$	26%	26%
Cut efficiency	18%	0.24%
N_{events}	1100	1800

N_{events} for 3 ab⁻¹ with τ-tagging 50% efficiency

Yields for 3 ab⁻¹ LHC

• Consider τ tagging efficiency benchmarks of 50% and 70%, use likelihood analysis testing different Δ

τ_h efficiency	50%	70%	
3σ	$L = 550 \text{ fb}^{-1}$	$L = 300 \text{ fb}^{-1}$	
5σ	$L = 1500 \text{ fb}^{-1}$	$L = 700 \text{ fb}^{-1}$	
$Accuracy(L = 3 \text{ ab}^{-1})$	11.5°	8.0°	

- Discriminating pure scalar vs. pure pseudoscalar at 3σ requires 550 (300) fb⁻¹ with 50% (70%) τ tagging efficiency
- For $\mathbf{5\sigma}$, require 1500 (700) fb⁻¹ with 50% (70%) τ tagging efficiency
- Again, detector effects and pileup are neglected

Improving the measurement of the tau

Yukawa CP phase for LHC

- Consider including MET information for LHC analyses
 - e.g. MELA-type likelihood incorporating signal hypotheses with different Δ
- Consider other tau decay modes or add decay vertex information
- Improve tau tagging efficiency
- Dedicated di-tau hadronic trigger
- Consider VBF production, Zh production
 - For VBF, 3 ab⁻¹, expect 52k $\pi^+\pi^0$ ν $\pi^-\pi^0$ ν total events (no cuts)
 - S/B is about 0.4 from ATLAS 8 TeV BDT analysis

Luminosity scaling (without systematics)

Incorporate detector effects

PRELIMINARY

Amplitude of Theta distribution diluted by about half

ATLAS Update

Use BDT output to categorize events

ATLAS-CONF-2013-108 50

ATLAS Update

Use BDT output to categorize events

ATLAS Update

- Focus on fully hadronic channel
 - Main backgrounds are still irreducible Z →ττ and QCD multijets

Process/Category	VBF			Boosted		
BDT score bin edges	0.85-0.9	0.9-0.95	0.95-1.0	0.85-0.9	0.9-0.95	0.95-1.0
ggF	0.39 ± 0.17	0.35 ± 0.16	2.0 ± 0.9	2.2 ± 0.8	2.5 ± 1.0	2.3 ± 0.9
VBF	0.57 ± 0.18	0.72 ± 0.22	5.9 ± 1.8	0.55 ± 0.17	0.61 ± 0.19	0.57 ± 0.17
WH	< 0.05	< 0.05	< 0.05	0.34 ± 0.11	0.40 ± 0.12	0.44 ± 0.14
ZH	< 0.05	< 0.05	< 0.05	0.22 ± 0.07	0.22 ± 0.07	0.22 ± 0.07
$Z \rightarrow \tau^+ \tau^-$	3.2 ± 0.6	3.4 ± 0.7	5.3 ± 1.0	15.7 ± 1.7	12.3 ± 1.8	9.7 ± 1.6
Multijet	3.3 ± 0.6	2.9 ± 0.6	5.9 ± 0.9	5.2 ± 0.6	3.7 ± 0.5	1.40 ± 0.22
Others	0.38 ± 0.09	0.49 ± 0.12	0.64 ± 0.13	1.49 ± 0.27	2.8 ± 0.5	0.07 ± 0.02
Total Background	6.9 ± 1.3	6.8 ± 1.3	11.8 ± 2.6	22.4 ± 2.5	18.8 ± 2.8	11.2 ± 1.9
Total Signal	0.97 ± 0.29	1.09 ± 0.31	8.0 ± 2.2	3.3 ± 1.0	3.8 ± 1.2	3.6 ± 1.1
S/B	0.14	0.16	0.67	0.15	0.2	0.32
Data	6	6	19	20	16	15

ATLAS-CONF-2013-108 52

Tau measurement details

Table 1. Branching fractions of the dominant hadronic decays of the τ lepton and the symbol and mass of any intermediate resonance [9]. The h stands for both π and K, but in this analysis the π mass is assigned to all charged particles. The table is symmetric under charge conjugation.

Decay mode	Resonance	Mass (MeV/c ²)	Branching fraction (%)
$ au^- ightarrow h^- u_ au$			11.6%
$ au^- ightarrow h^- \pi^0 u_ au$	$ ho^-$	770	26.0%
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	a_1^-	1200	9.5%
$ au^- ightarrow h^- h^+ h^- u_ au$	a_1^-	1200	9.8%
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$	-		4.8%

Tau measurement details

Table 4. The MC predicted τ_h misidentification rates and the measured data-to-MC ratios, integrated over the p_T and η phase space typical for the $Z \to \tau \tau$ analysis.

Algorithm	QCD		QCDμ		W + jets	
	MC (%)	Data/MC	MC (%)	Data/MC	MC (%)	Data/MC
HPS "loose"	1.0	1.00 ± 0.04	1.0	1.07 ± 0.01	1.5	0.99 ± 0.04
HPS "medium"	0.4	1.02 ± 0.06	0.4	1.05 ± 0.02	0.6	1.04 ± 0.06
HPS "tight"	0.2	0.94 ± 0.09	0.2	1.06 ± 0.02	0.3	1.08 ± 0.09
TaNC "loose"	2.1	1.05 ± 0.04	1.9	1.12 ± 0.01	3.0	1.02 ± 0.05
TaNC "medium"	1.3	1.05 ± 0.05	0.9	1.08 ± 0.02	1.6	0.98 ± 0.07
TaNC "tight"	0.5	0.98 ± 0.07	0.4	1.06 ± 0.02	0.8	0.95 ± 0.09