

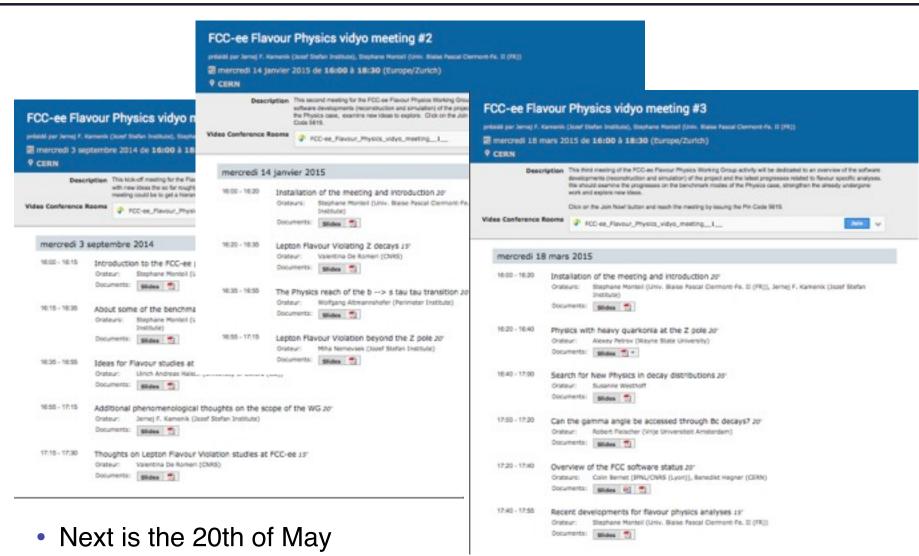
Flavours at FCC-ee.

J. F. Kamenik, Jozef Stefan Institute &

S. Monteil, Université Blaise Pascal – LPC-IN2P3-CNRS,

Outline of the talk

- Physics motivations for Flavours: Leptons and Quarks.
- Summary of the Physics Case identified so far.
- Two illustrations of the WG activity:
 - Lepton Flavour Violating Z decays
 - Installation of a typical *b*-hadron-related analysis: elements of the simulation of the signal.
- Conclusions.


Introduction: Scope of the Flavour Physics working

- Understand the experimental precision with which rare decays of *c* and *b*-hadrons and CP violation in the heavy-quark sector could be measured with 10¹² Z, as well as the potential sensitivity to new physics, and compare to the ultimate potential of the (soon to be) running LHCb upgrade and Belle II experiments. Examine the relevance of a dedicated PID (π/ K/ p separation) detector,
- The very same objective stands for the rare lepton decays.
- Examine the physics reach of lepton flavour violating processes and neutrino-related Physics unique to the FCC-ee.
- Have a platform to think of beyond standard observables.
- "What would like to do/see with/in 10^{12} / 10^{13} Z?" makes a nice playground to start with.

Flavours WG Meetings held on a bimonthly frequency

Meetings held on a bimonthly frequency

- The meetings have been used so far to trigger flavour physics-related ideas to define the wished/necessary experimental studies of the design study.
- The initial Flavour case, built out of the highs and laws of current and anticipated Flavours programs was criticized and commented to establish the following quadriptych, in no particular order:

4) Lepton Flavour Violating processes.

- Direct LFV processes: $Z \rightarrow e\mu$, $e\tau$, $\tau\mu$. In terms of model constraints, this can be far richer than the current or foreseeable reach for $\mu \rightarrow e\gamma$ or $\tau \rightarrow \mu\gamma$ etc...
- Related to the large $\tau\tau$ production at the Z pole: $\tau \to e\gamma$, $\mu\gamma$, eee, $\mu\mu\mu$. both LFV and Majorana neutrino. In the latter case, possibly rich likesign dilepton searches in b-hadron decays as well.

Physics Case and benchmark modes

- 1) Any leptonic or semileptonic decay mode involving B_s , B_c or b-baryon, including electrons, in no particular order:
 - $B_{d,s} \rightarrow ee$, $\mu\mu,\tau\tau$: if the second will be mostly covered by LHCb and CMS, the first can be searched for with a similar precision. The latter $B_s \rightarrow \tau\tau$ is most likely unique to FCC-ee and subjected to third family specific couplings.
 - Leptonic decays in direct annihilation $B_{u,c} \rightarrow \mu \nu_{\mu}, \tau \nu_{\tau}$. The latter is a chance to get $|V_{cb}|$ with mild theoretical uncertainties.
 - Radiative decays $B \to XII$ ($s\tau\tau$ at first): rare FCNC complementing the B_d at B-factories.
 - Note: if the baseline machine is to be confirmed with the crab-waist option, the flavours scope with $10^{13} Z$ is likely to improve dramatically. For instance, it should be possible to get |Vub| theory-free (well, strong isospin symmetry only ...) out of ratios of rare decays. Not mentioning that the large boost at the Z can be beneficial for classical methods.

Physics Case and benchmark modes

- 2) Any decay mode involving Bs, Bc or b-baryon with neutrals.
 - $B_{d,s} \rightarrow \gamma \gamma$: theoretically difficult.
 - $B_s \to K_S K_S$: *CP* violation studies. Also interesting for downstream tracking of V^0 in general.

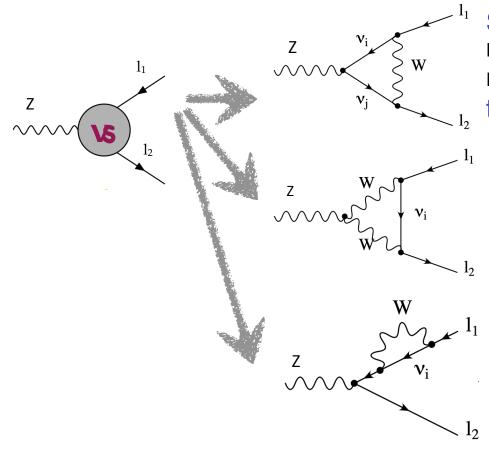
- 3) Multibody (4 and more) hadronic *b*-hadron decays.
 - $B_s \to \psi \eta'$ or $\eta_c \Phi$: flavour tagging required for weak mixing phase.
 - $B_s \rightarrow D_s K$: PID definitely required to isolate the signal.
 - Modes to be used to define the Particle Identification needs.

Starting with Leptons: LFV in rare Z-decays

- The Flavour Lepton Case as far as NP is concerned often goes through Lepton Flavour Violation(LFV) processes. An indisputable evidence for New Physics.
- Study specifically LFV decays of the Z boson to benefit for the pole statistics in the context of additional heavy neutral states (sterile neutrinos)
- Though LHCb and Belle II will be players in this game, the main contributors now and in the coming years will likely be low-energy LFV experiments: MEG, COMET...
- Address the complementarity with low-energy LFV experiments.
- Some illustration of obtained results.

LFV in rare Z-decays

 In the minimal SM (with massive neutrinos and PMNS mass mixing matrix), the LFV leptonic Z decays are beyond experimental reach


$$\mathcal{B}(Z \to e^{\pm} \mu^{\mp}) \sim \mathcal{B}(Z \to e^{\pm} \tau^{\mp}) \sim 10^{-54} \text{ and } \mathcal{B}(Z \to \mu^{\pm} \tau^{\mp}) \sim 4.10^{-60}$$

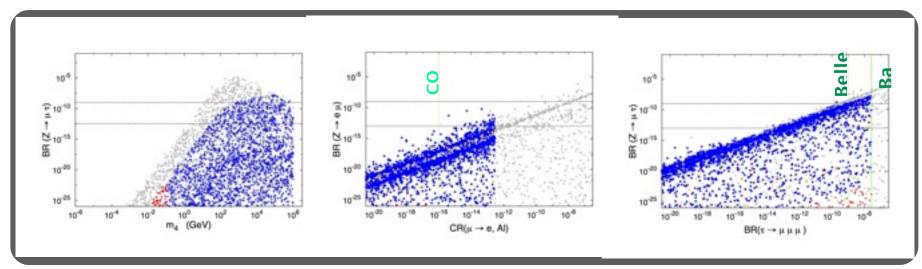
- Many NP models do foresee LFV Z decays: SUSY, Little Higgs etc...
- The current experimental bounds: $\mathcal{B}(Z\to e^\pm\mu^\mp)<7.5\ 10^{-7},$ $\mathcal{B}(Z\to e^\pm\tau^\mp)<9.8\ 10^{-6},$
- We could potentially go more than 5 orders of magnitude beyond.
- Illustration: study these decays in the context of additional sterile neutrinos and relate their constraints to other observables.
 arXiv:1412.6322 [hep-ph], V. De Romeri et al. to appear in JHEP.

 $\mathcal{B}(Z \to \mu^{\pm} \tau^{\mp}) < 1.2 \ 10^{-5}$.

LFV in rare Z-decays

Studies for the Giga-Z (Wilson, DESY-EFCA LC workshop (1998-1999), J. I. Illana and T. Riemann, Phys. Rev. D63 (2001) ... are revisited taking into account:

- θ 13 and other neutrino data
- new contributions of sterile states are severely constrained:
 - radiative decays (MEG)
 - 3-body decays
 - cosmology
 - neutrinoless double β decays
 - invisible Z-width


. . . .

LFV in rare Z-decays: "3+1" toy model

3+1 model is a convenient ad-hoc extension; 4th state encodes contributions of arbitrary number of steriles

V. De Romeri et al.

- Steriles with mass above 80 GeV and mixings O(10⁻⁵-10⁻⁴) within FCCee reach.
- Low-energy experiment at work to probe the electron-muon sector
- FCC-ee provides the stringent constraint in tau-mu sectors.

Conclusion with LFV in rare Z-decays:

- Self-contained interest: unique constraints / measurements can be brought on LFV Z decays at FCC-ee.
- This study made in the context of additional sterile neutrino states by examining the complementarity of low- and high- energy experiments.
- If ever a LFV experiment finds a positive results, LFV Z decays should be an invaluable asset to qualify the result.
- Also complementarities within FCC-ee: see the next talk by Alain on the direct search for Heavy Neutrals.

- The rare decays $b \to s \ell^+\ell^-$ are receiving increasing experimental and phenomenological interests:
 - good laboratory for new quark/lepton transitions operators.
 - possibly clean theoretical (QCD) uncertainties.
 - some signs of departures of the data w.r.t. the SM/QCD predictions.

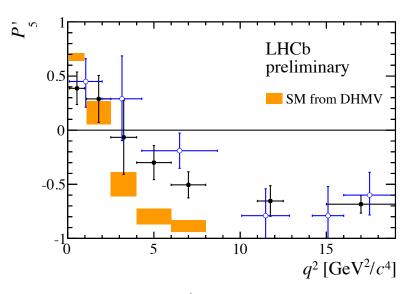
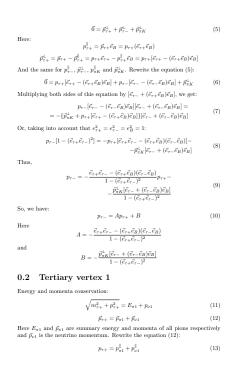


Figure 17: The observable P'_5 in bins of q^2 . The shaded boxes show the SM prediction taken from Ref. [13]. The blue open markers show the result of the 1 fb⁻¹ analysis from Ref. [7].

- The rare decays $b \rightarrow s \ell^+\ell^-$ are receiving increasing experimental and phenomenological interests:
 - good laboratory for new quark/lepton transitions operators.
 - possibly clean theoretical (QCD) uncertainties.
 - some signs of departures of the data w.r.t. the SM/QCD predictions.
- The tau lepton final state is unexplored so far but is necessary to complete the landscape, whatever the NP scenario is there or ruled out.
- See a nice first phenomenological exploration of this decay by W. Altmanshoffer here: https://indico.cern.ch/event/359433/contribution/0/material/slides/0.pdf
- Experimentally, aim at:
 - measuring the branching fraction,
 - studying the angular distributions.


Experimentally, aim at:

A. Semkiv et al.

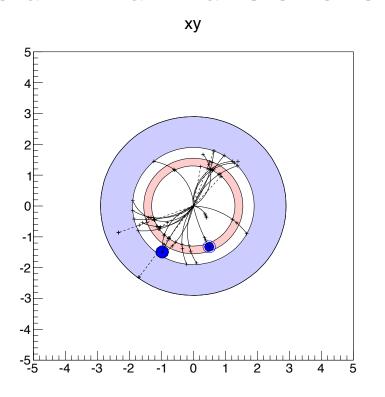
- measuring the branching fraction,
- studying the angular distributions.
- The latter requires the reconstruction of a particle decay in absence of the explicit reconstruction of one or several particles of the decay chain.
- Means: the partial reconstruction technique makes use of the vertices experimental information. The transition $b \to s\tau^+\tau^-$ can be fully solvable in the exclusive $B^0 \to K^{*0} \tau^+\tau^-$, if one tau vertex can be reconstructed.
- Counting the degrees of freedom:
 - B flight distance → 2 d.o.f., τ flight distances → 4 d.o.f., τ masses
 → 2 d.o.f.
 - Saturate the constraints to determine the six missing neutrinos momentum coordinates.

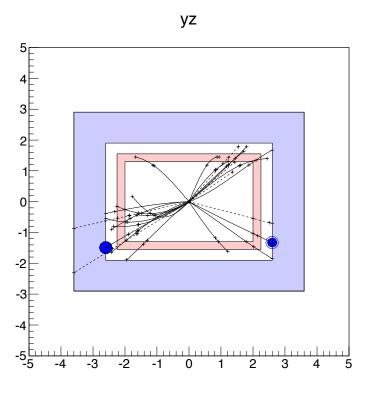
• The transition $B^0 \to K^{*0} \tau^+ \tau^-$ can be fully solved. In equations:

$$\vec{0} = \vec{p}_{\pi 1}^{\perp} + \vec{p}_{\nu 1}^{\perp} \qquad (14)$$
 Squaring both sides of the equations (11) and (13):
$$m_{\tau +}^{2} + p_{\tau +}^{2} = E_{\pi 1}^{2} + p_{\nu 1}^{2} + 2E_{\pi 1}p_{\nu 1} \qquad (15)$$

$$p_{\tau +}^{2} = p_{\pi 1}^{2} + p_{\nu 1}^{2} + 2p_{\pi 1}^{2}p_{\nu 1} \qquad (16)$$
 Subtracting (16) from (15) we get:
$$m_{\tau +}^{2} = E_{\pi 1}^{2} - p_{\pi 1}^{2} + p_{\nu 1}^{\perp 2} + 2(E_{\pi 1}p_{\nu 1} - p_{\pi 1}^{1}p_{\nu 1}^{\parallel}) \qquad (17)$$
 Now let's take into account that $p_{\pi 1}^{2} = p_{\nu 1}^{12}$ (from (14)):
$$m_{\tau +}^{2} = E_{\pi 1}^{2} - p_{\pi 1}^{2} + p_{\tau 1}^{\perp 2} + 2(E_{\pi 1}p_{\nu 1} - p_{\pi 1}^{1}p_{\nu 1}^{\parallel}) \qquad (18)$$
 Rearrange equation (18), taking into account that $p_{\nu 1} = \sqrt{p_{\nu 1}^{\perp 2} + p_{\nu 1}^{\parallel 2}} \qquad (19)$ Denoting $2C = m_{\tau +}^{2} - E_{\pi 1}^{2} + p_{\pi 1}^{\parallel 2} - p_{\pi 1}^{2} + 2p_{\pi 1}^{\parallel 2} + p_{\nu 1}^{\parallel 2} = 2E_{\pi 1}\sqrt{p_{\nu 1}^{\perp 2} + p_{\nu 1}^{\parallel 2}} \qquad (20)$ Rearranging equation (20):
$$(E_{\pi 1}^{2} - p_{\pi 1}^{\parallel 2})p_{\nu 1}^{\parallel 2} - 2Cp_{\pi 1}^{\parallel 2}p_{\nu 1}^{\parallel 2} + E_{\pi 1}^{2}p_{\pi 1}^{\perp 2} - C^{2} = 0 \qquad (21)$$
 The only unknown quantity in this equation is $p_{\nu 1}^{\parallel}$. Solving this quadratic equation yields:
$$p_{\nu 1} = \alpha_{1} \pm \beta_{1} \qquad (22)$$
 Here:
$$\alpha_{1} = \frac{Cp_{\pi 1}^{\parallel 2}}{E_{\pi 1}^{2} - p_{\pi 1}^{\parallel 2}} p_{\pi 1}^{\parallel 2} + C^{2} - E_{\pi 1}^{2}p_{\pi 1}^{\perp 2} + C^{2} - E_{\pi 1}^{2}p_{\pi 1}^{\perp 2} + E_{\pi 1}^{2}p_{\pi 1}^$$

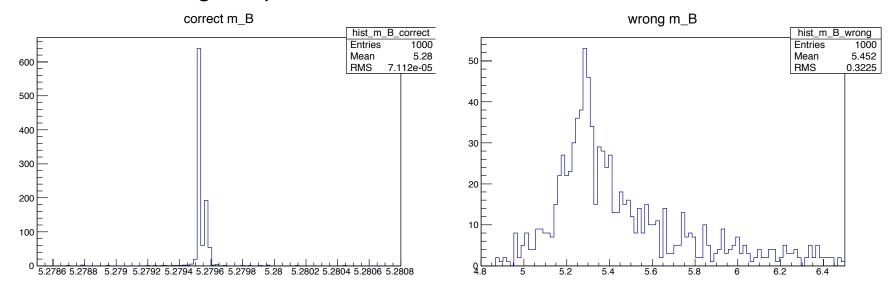
Now we can use this expression in equation (15) to find the value of $p_{\tau+}$ and


then find the value of p_B using equations (10) and (3)


A. Semkiv et al.

- Nothing complicated but quite ... cumbersome.
- This can be generalized even to decays where the secondary vertex is NOT reconstructed. Thinking of $B^0_s \rightarrow \tau^+\tau^-$ for instance.

- We generated at the Z pole within FCC software interfaced with the EvtGen generator the decay $B^0 \to K^{0*} \tau^+ \tau^-$
- Generation in pictures: the detector is CMS-like. Note that the *B* field is set at 1 T. Warm thanks to the FCC software team.



Flavours @FCC-ee

Commissioning the partial reconstruction. It works!

- Next step will be to smear the vertex distances with relevant detector resolutions and figure out the performance of the partial reconstruction in this use case in presence of backgrounds.
- The anticipated excellent vertexing at FCC-ee experiments, the clean experimental environment and the large boost at the Z pole should be invaluable arguments for these techniques.

Summary

- Within the Flavours working group, we start to gather small experimentalists / theoreticians teams on the benchmark modes.
- We reported the installation of the elements (phenomenological and experimental) of two analyses for the design study.
- Use also this WG as a platform for thinking beyond standard observables. Please get in touch with us if you're interested to join.
- A distribution list is set up. You're very welcome to join it : <u>fcc-ee-FlavourPhysics@cern.ch</u>
- A twiki page is gathering the progresses:
 https://twiki.cern.ch/twiki/bin/viewauth/FCC/FCCeeFlavourPhysics