

Losses in IR Region

M. Boscolo (INFN-LNF)

for the FCC-ee MDI Team: H. Burkhardt (CERN) and N. Bacchetta

First Annual Meeting of the Future Circular Collider Study Washington DC, 23-27 March 2015

Introduction

- Main Effects of IR Beam Losses
- Particle tracking tools
- First Results with FCC-ee Crab-waist Optics
- Perspectives and Conclusions

Goal (challenge) of the MDI group together with the IR design group: maximize performance (integrated luminosity) for experiments for good or at least tolerable experimental (background, stability) conditions.

Background Sources

Two Main Classes:

– Beam particles e⁺, e⁻, e⁺e⁻ effects

- Bhabha
- Beamstrahlung
- Beam-gas
- Touschek
- Thermal photons

- Synchrotron Radiation

covered by H. Burkhardt's talk (Wed. 9.30)

- Both aspects deeply studied for present/past machines
- Beam particles effects (better) studied at Factories
- SR manageable extrapolation from LEP experience but very challenging machine, dedicated studies needed

Background Sources

Luminosity sources

- Beamstrahlung
- Bhabha (Radiative)
- 2-photon pair production e⁺e⁻ -> e⁺e⁻ e⁺e⁻ e⁺e⁻ -> e⁺e⁻ μ⁺μ⁻
- Beam-beam (Halo)

Linear with Currents

- Synchrotron radiation
- Beam-gas Coulomb/ Bremsstrahlung (at constant Pressure)

Other sources

- thermal outgassing due to HOM losses
- top-up injection background
- High order modes
- Compton thermal photons
- ion or electron cloud
- single / multiple Touschek scattering

M. Boscolo, FCC Week 2015

Background Sources

Luminosity sources

- Beamstrahlung
- Bhabha (Radiative)
- 2-photon pair production e⁺e⁻ -> e⁺e⁻ e⁺e⁻ e⁺e⁻ -> e⁺e⁻ μ⁺μ⁻
- Beam-beam (Halo)

Linear with Currents

- Synchrotron radiation
- Beam-gas Coulomb/ Bremsstrahlung (at constant Pressure)

Other sources

- thermal outgassing due to HOM losses
- top-up injection background
- High order modes
- Compton thermal photons
- ion or electron cloud
- single / multiple Touschek scattering

M. Boscolo, FCC Week 2015

Some cause backgrounds due to direct beam losses: particle tracking needed.

The impact of these effects is of course dependent on machine parameters (like beam energy, energy acceptance)

> not expected to be determinant, but has to be checked. I started from this one

checke ing (_____ I starte

Dependence on Energy Acceptance

-

Energy dependent processes: scale law

$$P(\text{Beamstrahlung}) \propto (\gamma) \frac{N^2}{\sigma_x \sigma_y}$$

$$P = Probability function$$

$$P(\text{Bremstrahlung}) \propto \ln(\sqrt{s}) \cdot L \propto (\ln(\sqrt{s})) \cdot \frac{N^2}{\sigma_x \sigma_y}$$

$$Vs = c.m. \ energy$$

$$L = Luminosity$$

$$P(\text{Touschek}) \propto (\frac{1}{\gamma^3} \frac{N}{\sigma_x \sigma_y \sigma_z})$$

Looking at the scaling with the beam energy that **Beamstrahlung** is the dominant effect at high energies being strongly dependent on energy acceptance, energy acceptance needed as high as possible

M. Boscolo, FCC Week 2015

Evaluation of Touschek Effect

- **1.** Touschek lifetime: usually evaluated by the formula, that is dependent on the momentum acceptance, so either
 - Give the machine momentum acceptance as input, and calculate the formula of the Touschek lifetime averaging on the whole lattice (rough evaluation)
 - Calculate the local momentum acceptance through the lattice elements and calculate the formula for each small section of the lattice and then sum up (more precise evaluation)

Probability Loss is a step function when machine momentum acceptance is given as an input (resulting from Dynamic Aperture calculation)

> Touschek Probability Loss function resulting from particle tracking (consistent, slightly worse, resulting about 0.6-0.8%)

The importance of this approach is more important if the distribution vs $\Delta E/E$ is very nonlinear (as for Touschek)

Evaluation of Touschek Effect

- **1.** Touschek lifetime: usually evaluated by the formula, that is dependent on the momentum acceptance, so either
 - Give the machine momentum acceptance as input, and calculate the formula of the Touschek lifetime averaging on the whole lattice (rough evaluation)
 - Calculate the local momentum acceptance through the lattice elements and calculate the formula for each small section of the lattice and then sum up (more precise evaluation)

2. Touschek Beam Losses: particle tracking needed along the ring

- Macro-particles are tracked through each small slice of elements for many turns (slicing needed for a correct estimate of the Touschek scattering rate to take into account changes of beam density and for proper tracking)
- Non-linear kicks included in the tracking.
- From the total particle losses it is possible to derive the lifetime lifetime (s) = N(beam) / Rate Beam Losses (s)

 \Rightarrow (approach used for DA Φ NE, SuperB, Italian Tau/C) [Ref. PRST-AB 15 104201 (2012)]

Touschek Tracking code Monte Carlo: some details

- Lattice imported from MAD-X
- A randomly chosen set of macro-particles are launched out of a Gaussian bunch for each small segment of the ring -small enough not to have meaningful Twiss functions changes- and tracked trough the ring for few machine turns or until they are lost.
- These macro-particles are off-energy, as have undergone Touschek scattering, each one has weight proportional to the energy spectrum of the Touschek effect (very nonlinear and lattice dependent)
- once per turn the macroparticle's energy deviation is compared to rf acceptance.
 - Disadvantage: loss location due to rf acceptance exceed not determined
 - Advantage: 4-D tracking in the transverse dimensions for smaller machine turns
- Will interface output with ROOT (plotting and primaries handling)

Lattice: crab-waist option 4IPs (TLEP_V14_IR_6-13-2)

perfect overlap of β_x , β_y and D_x as calculated by MADX and STAR

Lattice: crab-waist option 4IPs

TLEP_V14_IR_6-13-2 parameters:

Parameters for crab waist

	Z	W	H	tt
Energy [GeV]	45	45 80		175
Perimeter [km]	100			
Crossing angle [mrad]	30			
Particles per bunch [10 ¹¹]	1	4	4.7	4
Number of bunches	29791	739	127	33
Energy spread [10 ⁻³]	1.1	2.1	2.4	2.6
Emittance hor. [nm]	0.14	0.44	1	2.1
Emittance ver. [pm]	1	2	2	4.3
β_x^*/β_y^* [m]	0.5 / 0.001			
Luminosity / IP				
$\left[10^{34} cm^{-2} s^{-1}\right]$	212	36	9	1.3
Energy loss / turn [GeV]	0.03	0.3	1.7	7.7

Parameters of one quarter of the ring

	tt		
Energy [GeV]	175		
Perimeter [m]	24747.6		
Momentum compaction	5.7 · 10 ⁻⁶		
Emittance hor. [nm]	1.8		
Energy spread [10 ⁻³]	1.6		
β_x^*/β_y^* [m]	0.5 / 0.001		
Energy loss / turn [GeV]	2.15		

A. Bogomyagkov (BINP)

FCC-ee Touschek Off-energy trajectories

Momentum Aperture of Touschek particles through the ring

(from physical aperture)

- Crucial for all sources inducing a $\delta E/E$ like Touschek, rad Bhabha, beamstrahlung (HE)
- Best determined with full tracking

FCC-ee Touschek Rate

Touschek lifetime SuperB = 400 s with momentum acceptance ~1 % and realistic physical aperture

Touschek Rate scales like 1/E^{2.5} wrt 1/E³ naïve expectation -> Energy scaling largely dominates

First look confirms that Touschek not a dominant effect also for energy acceptance comparable to SuperB Factories

FCC-ee Off-energy Particles ^{1 full turn} tracking only

- Starting Touschek energy off-set range between 0.3% and 4%
- RF acceptance is cut-off at 3%
- constant physical aperture=2 cm

result consistent with A. Bogomyagkov's evaluation in the range (-1.8%; +1.4%)

Next Step: FCC-ee multi-turn simulation

- work in progress
- Long CPU time for such a long machine
- Many elements (sliced) and many macroparticles
- A small worsening (of the order of 0.5%) expected (from studies on other colliders)

Beam-gas scattering

- Mainly Coulomb and Bremsstrahlung interactions with residual gas molecules in the beam pipe
- As a start: the estimate based on LEP2 rates and rescale for beam currents
- For a more quantitative and accurate estimate the lattice description is needed

TOOLS:

- PLACET, HTGEN (Helmut)
- MCGAS Monte Carlo developed for SuperB and Italian τ -charm (Manuela)

Beam-gas Coulomb scattering

B-Factories

	LER parameters	unit	КЕКВ	SuperKEKB	SuperB	LEP	CEPC	CW
	V beam pipe @QD0	mm	35	13.5	6			(175GeV)
	$\beta_{y}(max)$ @QD0	m	600	2900	1497	150 m	12.1 km	9.9 km
	<β _γ > [m]	m	23	48	47			
	Coulomb lifetime	hr/min	>10 hrs	35 min	24 min			

- Coulomb rate decreases quadratically with energy beneficial for FCC-ee
- Coulomb rate increases linearly with $\beta_{ave} \implies worse$ for FCC-ee
- Losses happen vertically at $\beta_v(max)$ (i.e. at QD0) • worse for FCC-ee larger by 1 order of magnitude with respect to SuperB should be found Factories, at LEP there was no high beta close to the IP a trade off for this value

Beam-gas Bremsstrahlung

- At LEP off-energy particle background was largely dominated by beam-gas Bremsstrahlung along the straight sections [τ_B = 430 hrs with P=10⁻¹⁰ Torr, NIM A 403 (1998) 205-246]
- From 45 GeV to 65 GeV dynamic pressure increased by a factor 5

- At FCC-ee Beam Losses needs to be studied with particle tracking
- General requirement: **P < 1.E-9 Torr**

Radiative Bhabha

- Large energy loss/angle => lost almost immediately, closeby detectors
 - almost independent on machine lattice but the Final Focus
 - BBBREM generator [R. Kleiss, H.Burkhardt](collinear), BABAYAGA, BHWIDE(low angle)
- **Small energy loss/angle** => may be lost after few machine turns
 - multi-turn tracking with a dedicated Monte Carlo simulation* with BBBREM generator for the weights of the tracking particles
- Cross-section almost independent on sqrt(s)
- Lifetime depends essentially on energy acceptance at IP and on Luminosity
- Multi-turn particle losses best calculated by tracking

Beamstrahlung

- Beamstrahlung is synchrotron radiation in the field of the opposing beam
 - energetic photons are emitted -> produce background
 - \rightarrow –(Δ E/E) bunch particles get lost in
 - -> Backgrounds from debris
 - -> Luminosity drops
 - -> beam energy spread affected

Many analogies (dependence on energy acceptance at IP, direct losses) with Radiative Bhabha but Beamstrahlung is the dominant effect at the high energies of FCC-ee

Main Effects Tracking tools First Results Conclusions

FCC-ee off-energy trajectories from IP (Radiative Bhabha and Beamstrahlung)

to estimate off-energy particles loss rates from IP, due to Radiative Bhabha or Beamstrahlung, weights are needed, *i.e.* cross section as a function of $\Delta E/E$

it will be next step

M. Boscolo, FCC Week 2015

FCC-ee off-energy trajectories from IP (Radiative Bhabha and Beamstrahlung)

Conclusions

IP off-energy particles: Multi-turn energy acceptance at IP

FCC-ee: 10 machine turns

TLEP_V14_IR_6-13-2 optics 175 GeV

Conclusions

- We need to check all beam loss effects, but priority is given to:
 - Bhabha (radiative)
 - Beamstrahlung
- First FCC-ee Touschek Losses simulation done, need progress with:
 - Multi-turn
 - Check at all energies (especially at the Z)
 - Keep-up with Lattice and parameters updates
- Beam-gas Losses similar studies to be done
- Benchmarking with e+e- machines (SuperKEKB, DAFNE)
- Top-up injection losses
- Muon backgrounds

Conclusions

- The design of the IR is a critical issue for the success of a collider
- Careful trade-off machine / detector constraints

detector constraints:

- Physics acceptance from the nominal beam axis
- Smallest possible beam pipe radius
- Thinnest possible beam pipe wall
- Solenoidal detector
- Separation scheme
- L* key parameter
- In this frame simulations of all the effects that induce machine backgrounds –as realistic as possible- are essential

Back-up

M. Boscolo, FCC Week 2015

Perspectives for Software Development

• Presently the Monte Carlo reads MAD-X output (tfs file), produce the input for the MC, that recalculates optics matrices needed both for tracking and twiss functions

We foresee:

- Tracking directly using MAD-X matrices->
- Touschek routine in ROOT or interfaced with ROOT –
- ROOT as a graphical interface similarly to MDISIM
- BBBrem + MC Tracking
- other effects (Beamstrahlung)

Machine Energy Acceptance: Multiturn

- Multiturn studies for FCC-ee are in progress
- Long CPU time for such a long machine
- Many elements (sliced) and many macroparticles

Experience from previous studies _{0.2} (DAFNE, SuperB, tau/charm) shows a worsening of the energy acceptance of about 0.5% in multi-turn ₀