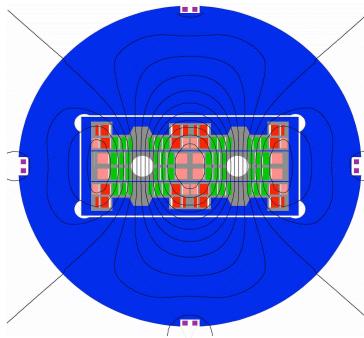
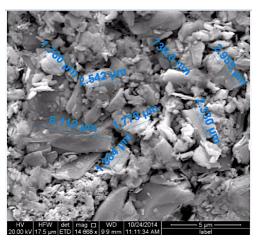
High, Low, Jack and the Game Ways to tackle the impossible to make 100 TeV hadron collisions

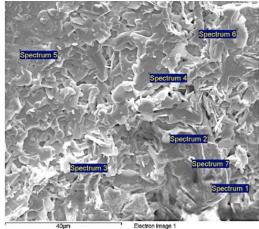


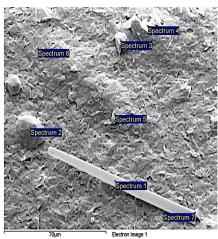
Peter McIntyre
Texas A&M University

High Field, Low Circumference

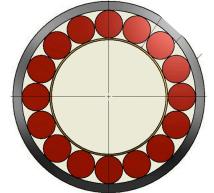
= 16 T, 90 km circumference

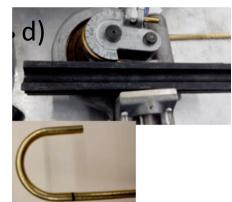




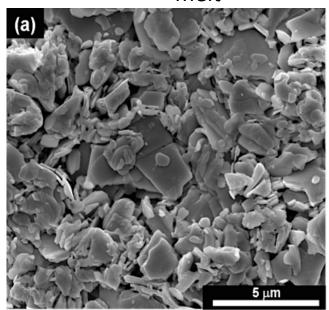

- ➤ CERN is blessed with Alps and Jura, cursed with <90 km maximum collider circumference.
- \triangleright Need ~16 T dipoles for the double ring = Nb₃Sn and Bi-2212.
- > Very expensive superconductor (wire would be >\$15 B today)
- > Conductors are fragile, require stress management in windings.

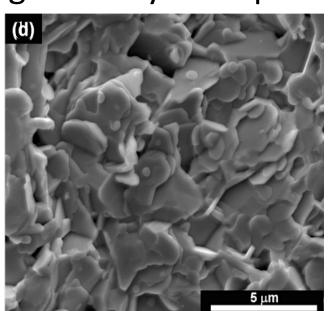
Texas can help two ways...


 Enhanced Textured-Powder processing of Bi-2212/Ag to enhance j_c, improve mechanical properties.

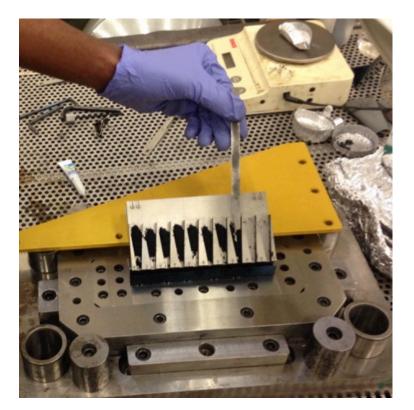


• Stuctured cable-in-conduit provides intrinsic stress management, compatibility for heat treatments.

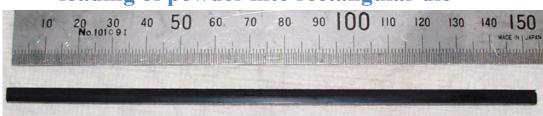




We began several years ago to seek a way to achieve connectivity without melting


- Textured-Powder[©] processing:
 - Achieve >80% texture of a-b plane orientation using unixaxial compression of Bi-2212 fine powder
 - Press the cores to form tablets, square bar subelements
 - Heat treat <T_{melt} to grain growth by solid-phase diffusion

©US patent 8,592,346 (2013)


Fabrication of textured-powder monocores

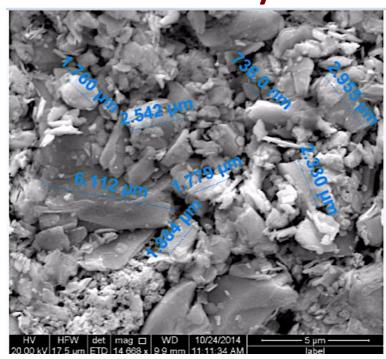
die assembled in hydraulic press ready for compression to 30 ksi

loading of powder into rectangular die

4 mm² cross-section Bi-2212 bar

bar assembled in a Ag monocore billet.

The germ of an idea


- It has long been known that Ag lowers the melt temperature of Bi-2212 at the interface.
- To some degree Ag guides the texture during re
 Crystallization.

 Hasegawa et al., 'The effect of Ag on the formation of Bi-2212 thick film', Physica C222, 111 (1994).
- In melt processed Bi-2212/Ag wire, supercurrent flows primarily close to the Ag interface.
- Nate Pogue's idea: suppose we bring the Ag interface into contact with all surfaces of all grains of Bi-2212 in a textured powder.
- Enhanced Textured-Powder[©]: Homogeneously disperse Ag nanopowder in Bi-2212 fine powder. Then follow the procedures for Textured-Powder processing.

©PTO patent applied for

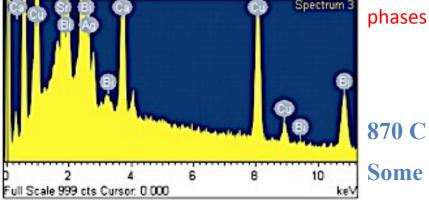
Homogeneous mixing of nanopowders is tricky – we have succeeded.

Cu-free

Spectrum 5

Spectrum 4

Spectrum 7

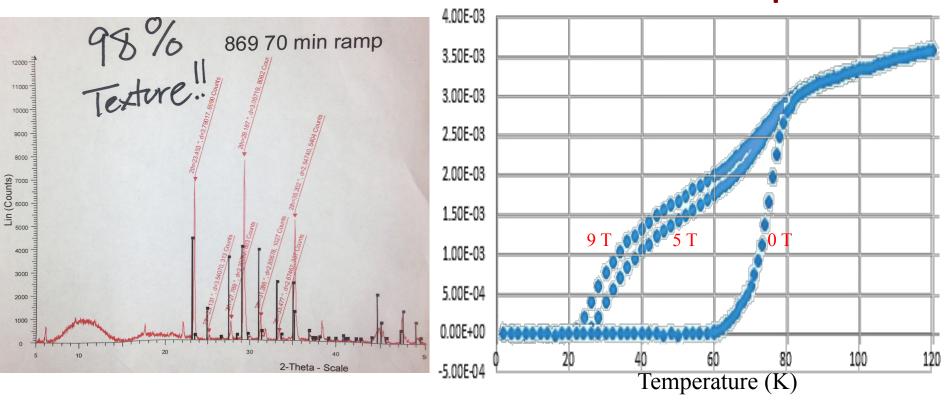

Spectrum 7

Spectrum 1

Spectrum 1

Spectrum 1

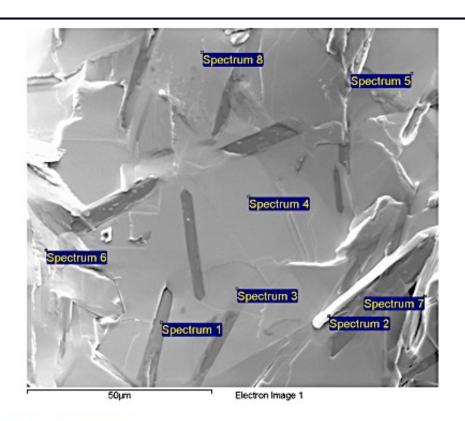
Admixture of Ag nanoparticles and Bi-2212 powder.



870 C for 2 hours, then fast ramp down-ramp

Some parasitic phase formation

Perfect texture


Current transport in Tablet samples

We have achieved macroscopic supercurrent transport over ~cm scale with tablet samples following non-melt heat treatment of nanopowder-enhanced textured-powder Bi-2212.

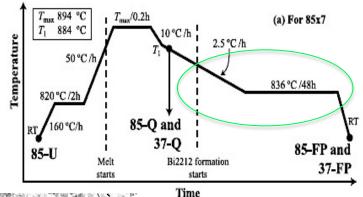
Now we are working to fabricate multifilament wire...

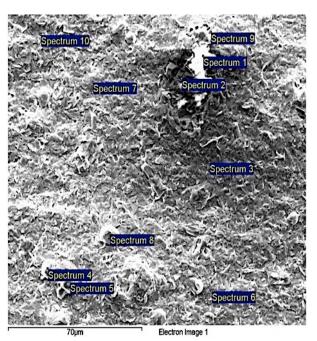
Is there melting in the TP core?

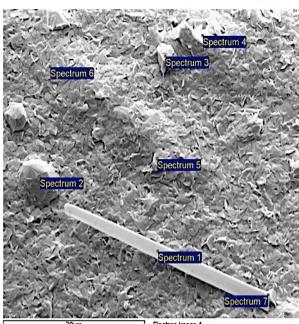
872 C 70 m ramp-up, 30 m dwell, fast ramp-down

For 860 C-870 C, we see no evidence of melting in any sample

Processing option: All elements analysed

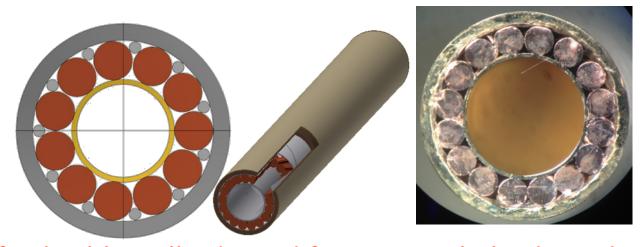

Spectrum	In stats.	C	Al	Ca	Cu	Zn	Sr	Ag	Bi	Total	
Spectrum 1	Yes	-11.45		61.33	384.12	0.42	295.63	-0.91	22.18	751.32	AEC
Spectrum 2	Yes			33.49	110.74		156.46	2.33	498.61	801.62	
Spectrum 3	Yes			16.95	97.99		194.92	1.76	606.89	918.50	
Spectrum 4	Yes			14.74	79.54		198.59	-0.41	652.01	944.47	
Spectrum 5	Yes			16.35	82.22		206.11	-1.11	687.24	990.81	
Spectrum 6	Yes	9.48		18.05	81.70		204.22	2.93	670.97	987.35	
Spectrum 7	Yes		1.99	8.99	73.71		96.46	0.52	335.88	517.55	
Spectrum 8	Yes			12.91	78.32		180.74	2.83	600.32	875.12	
Max.		9.48	1.99	61.33	384.12	0.42	295.63	2.93	687.24		
Min.		-11.45	1.99	8.99	73.71	0.42	96.46	-1.11	22.18		


And then we add the slow


down-ramp of Kametani...

Kametani et al., 'Bubble formation within filaments of melt-

Kametani *et al.*, "Bubble formation within filaments of melt-processed Bi2212 wires and its strongly negative effect on the critical current density', SUST **24**, 075009 (2011).


- a) 875 C with 6 hr at top, no anneal; 9 parasitic phase grains were observed;
- b) 867 C with 24 hr at top, 24 hr anneal; no parasitic phase grains are observed.

The anneal appears to reverse all parasitic phases back to Bi-2212.

The core is fully dense, and contains only Bi-2212 and Ag.

Will we be able to enhance j_c beyond what is achieved by overpressure? Stay tuned – we plan to present first multi-subelement wire tests at ICMC.

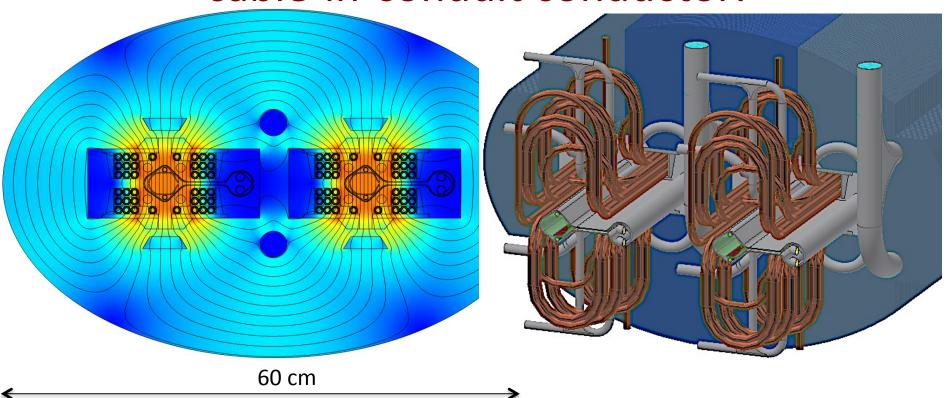
Cable-in-conduit for Bi-2212/Ag Robust 15 kA cable for hybrid dipoles

- Rutherford cable is ill-adapted for use in a hybrid-conductor dipole.
 - ightharpoonup Nb₃Sn and Bi-2212 have radically incommensurate heat treatments 650 C in Ar vs. 870 C in O₂.
 - ➤ One cannot separately prepare and heat-treat insert and outsert windings. It would be impossible to preload them thereafter for stress management.
- > Solution: single-layer cable-in-conduit of Bi-2212.
 - > Spiral-wind round-strand Bi-2212/Ag onto thin-wall spring tube;
 - Form/weld sheath tube on outside using continuous tube forming;
 - > Draw sheath down onto cable to compress strands against spring tube

The CIC cable provides an ideal basis for insert windings

- It bends readily for flared end windings
 - Bend radius 8x cable radius maintains inner registration, no strain to strands
- Spring and sheath tubes made from Al bronze
 - no degradation of Bi-2212, diffusion barrier protects bronze
- CIC cable provides the retort for overpressure processing (if necessary) – no bombs...
- O₂ atmosphere only bathes the CIC interior, no oxidation to structural elements.
- Insert is stable and intact after HT
 - outsert windings can be wound onto insert and heat-treated without effect on insert
- Intrinsic stress management
 - Lorentz stress bridges through sheath tubes, Bi-2212 unharmed

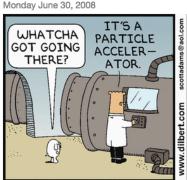
We have developed CIC cable fabrication, use in dipole windings


Low field, high circumference

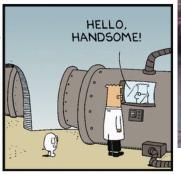
= 4.5 T field, 270 km circumference

- Texas is blessed with Austin Chalk and Taylor Marl, nature's ideal tunneling medium.
- > The SSC tunnels are the fastest-rate, lowest-cost tunnels ever built.
- > \$1,000/ft, \$1.7 B today for 270 km, less cost than 90 km @ CERN
- ➤ We have designed a 4.5 T NbTi C-dipole that is ideal for the collider.

We have combined the simplicity of the low-field superferric SSC dipole with a cable-in-conduit conductor:


- 4.5 Tesla dipole field
- C-dipole: synchrotron radiation is absorbed at 150 K in a side chamber (like LEP).
- Refrigeration is 100x more efficient, so heat load not a limit.
- Clearing electrode suppresses electron cloud; 25 ns bunch spacing feasible.
- Superconducting winding has 20 turns total, wound from round cable-in-conduit.

The 4.5 T NbTi dipole is key to manufacturability and cost


- Each dipole winding contains a total of 20 turns of cable.
- Quench protection is provided by driving current pulse in cable sheath – quenches all turns without voltage spike.
- Total cross-section of superconducting strand in one dipole is 8 cm² NbTi.
- Compare to 39 cm² NbTi for LHC,
 105 cm² of Nb₃Sn and 32 cm² of NbTi for 16 T dipole.
- Total cost of superconductor for 16 T ~\$22.8 billion.
- Total cost of superconductor for 4.5 T ~\$2.4 billion.

Jack and the Game...

- The world will not pay an unlimited amount of \$ + € +
 ¥ for future discovery in high energy physics.
- It is incumbent upon us to make Moore's Law work for HEP, so the next collider costs no more than the last collider.
- We must seek lowest-cost technology for magnets, and lowest-cost sites for tunnels.
- Then perhaps we can play...

