

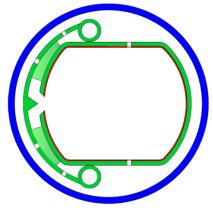


# MAGNET SESSION SUMMARY

E. Todesco CERN, Geneva Switzerland

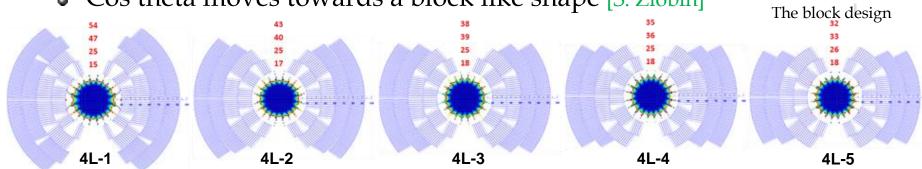
Acknowledgements: L. Bottura and all the speakers

# CERN


### SOME REMARKS

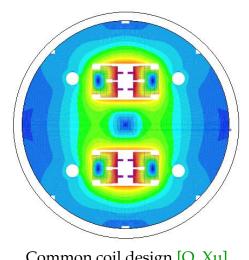
- Design study in initial phase
  - Time not to close the door to ideas, but rather to explore
  - On the other hand ...
    - Beam dynamics colleagues (and many others: vacuum, cryogenics, energy deposition ...) need a baseline of magnets technology, lengths, field, transverse dimensions
    - Resources are limited, so when it comes to hardware few promising options should be tried (short models)
- Enthusiastic international team built in record time
  - Many labs contributed in US, Europe and Asia
  - Collaboration is fundamental to address the challenges
  - Synergy with Hi-Lumi giving very positive results
  - Massive presence of industry




# APERTURE OF ARC MAGNETS

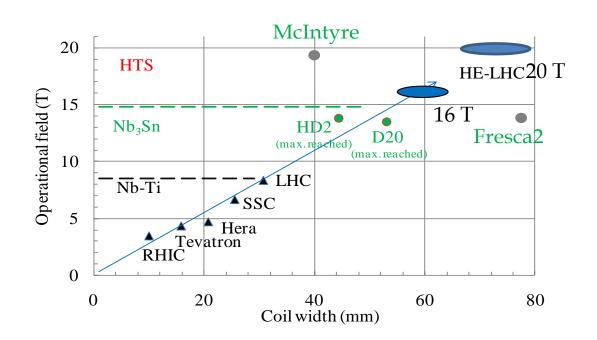
- Initial value was 40 mm  $\rightarrow$  now it is 50 mm
  - Required for adding shielding
- 25% larger aperture has some beneficial effects
  - Solving the issues in magnet sc design for very small apertures
    - Quadrupoles become much less effective
    - Problems with curvature radius in the heads [G. L. Sabbi for main dipoles, C. Lorin for main quadrupole]
  - 25% more aperture gives 10% more conductor, so it is not a \$ drama
- Space for shielding and beam screen allows heat removal
  - In principle, no need for open dipole design
  - Option explored by [P. McIntyre, R. Gupta]

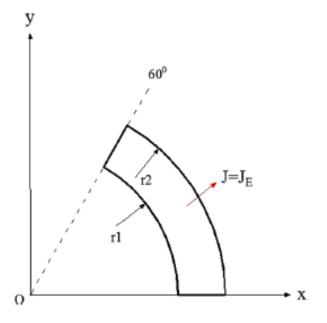





- Block versus cos theta:
  - Similar efficiency between two design [J. van Nugteren]
  - Cos theta moves towards a block like shape [S. Zlobin]



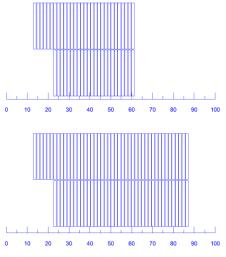

The origin of the species: from cos theta towards block

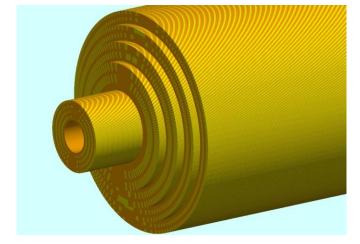

- Grading gives 25-40% saving
  - And using Nb-Ti another 10-15%
- Common coil layout at 20 T with HTS





- Selection of the coil current density
  - Field=current density \* width of the coil
  - Consensus that 400 A/mm<sup>2</sup> is a reasonable and feasible value
  - Coil width needed is 60 mm → two layers not enough




Field versus coil width [E. Todesco, L. Rossi, Malta 2011]



- A few, brave scientists try going beyond the 400 A/mm<sup>2</sup>
  - G. L. Sabbi towards 500 A/mm<sup>2</sup> with block
  - S. Caspi towards 700-800 A/mm<sup>2</sup> with canted
    - Advantage: compact coil, lower price
    - Problem: stress, protection
  - It is an option for block, but is a must for canted (otherwise too expensive)





Compact, high current density lay out (top) [G. L. Sabbi]

| Туре   | Non-Cu (%) | T (K) | Bbore (T) | Bconductor (T) | Jstrand (A/mm²) | Icable (A) |
|--------|------------|-------|-----------|----------------|-----------------|------------|
| 1-in-1 | 47         | 4.25  | 15.6      | 16.1           | 700             | 8100       |
| 1-in-1 | 60         | 4.25  | 16.3      | 16.9           | 732             | 8500       |
| 2-in-1 | 60         | 4.25  | 16.7      | 17.2           | 680             | 7820       |
| 1-in-1 | 60         | 1.9   | 17.9      | 18.5           | 803             | 9230       |
| 2-in-1 | 60         | 1.9   | 18.2      | 18.8           | 740             | 8510       |

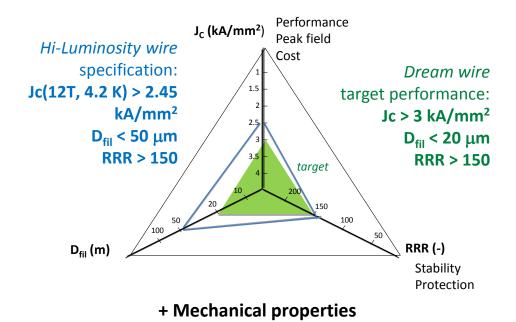
The canted dipole concept and a guess of main parameters [S. Caspi] Summary of magnet sessions - 6



- Margin and training
  - Usually one works at 80% of the maximum possible current (short sample) this is a 20% margin
  - For the LHC, 20% margin corrresponds to 6.5 TeV
- Consensus on
  - Margin is expensive
  - Margin is needed
  - 20% is enough
  - Can we have less?
- The margin range of 20%-10% should be explored [L. Bottura, G. L. Sabbi, S. Zlobin, S. Caspi, ...]



#### CONDUCTOR


«Ask and it will be given to you» [Mt., 7.7]

«Share the burden» [S. Gourlay, yesterday]

- The golden triangle of Luca and Amalia [ASC 2014]
  - 60% smaller filament (20 μm instead of 50 μm)
  - 50% more j<sub>c</sub> at 15 T
  - RRR is OK

| Wire diameter                         | mm                | ≤1           |
|---------------------------------------|-------------------|--------------|
| Non-Cu Jc (16 T, 4.2 K)               | A/mm <sup>2</sup> | ≥ 1500       |
| μο <b>ΔΜ(1 T, 4.2 K)</b>              | mT                | <b>≤ 150</b> |
| $\sigma$ (μο $\Delta$ M) (1 T, 4.2 K) | %                 | <b>≤ 4.5</b> |
| Deff                                  | μm                | ≤ 20         |
| RRR                                   | -                 | ≥ 150        |
| Unit length                           | km                | ≥ 5          |

#### Nb<sub>3</sub>Sn specification for Hi-Lumi LHC



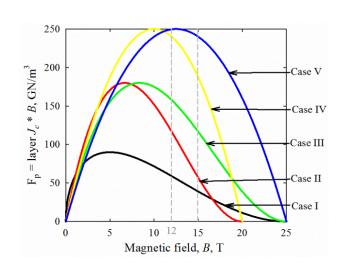


# CONDUCTOR

- If I had only one wish, I would ask \$\$\$ (less)
  - Cost presented by [L. Cooley]
  - Present cost of Nb<sub>3</sub>Sn is a showstopper to the project
  - Cost should be well below 1000 \$/kg (Lucio set a target of 800 in Malta)
- If I had a second one: lengths
  - We need kms! This is crucial
- Several talks from manufacturers
  - Eager to take the challenge
- Consensus on
  - Best j<sub>c</sub> available today is a must
    - And a 50% increase asked gives 40% reduction of conductor
  - RRR>150 for stability





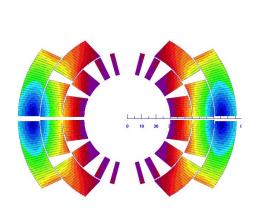

Visual metaphor for future FCC strand!

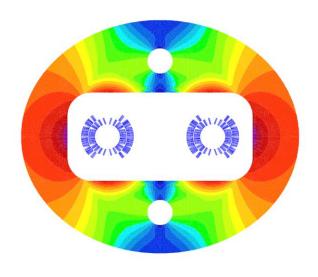
Future FCC conductor [M. B. Field, OST]

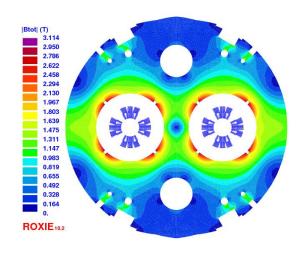


### CONDUCTOR

- Some questions still open
  - Do we really need 20 μm filament?
    - Efforts to be carried out on persistent current, instabilities, etc
    - Interesting results on field quality in main dipole, that looks nice even with thick filaments [S. Izquierdo] but for D1 is critical [T. Nakamoto]
  - HL-LHC magnets will have 50 μm filament size, will be a good test for instabilities
- US effort to explore the ultimate limits in Nb<sub>3</sub>Sn current density: The outlook is impressive ...





Improving the pinning in Nb3Sn [D. Larbalestier]




# OTHER MAGNETS

- Guideline: strong synergy with HL LHC
  - Magnets with similar level of difficulty as in HL-LHC
    - Peak fields of 10-13 T
    - Conceptual design in progress, first layout seems reasonable







D1 coil [T. Nakamoto]

D2 cross-section [P. Fabbricatore]

Q4 cross-section [C. Lorin]

- Next target: correctors!
  - We must be sure to have no showstoppers due to 7\* more energy



# CONCLUSIONS AND SOME QUESTIONS

- Very fast advancement towards a baseline for the lattice
  - Convergence on many parameters and main features of the 16 T dipole
  - Many programs progressing to answer many issues
- Design: reducing cost and complexity
  - Are 500 A/mm<sup>2</sup> ok? And 700-800?
  - Can we reduce the 20% margin?
- Conductor
  - How to reduce price?
  - How to get to 5-km lengths?
- Technology
  - Explore materials that can withstand 150 MGy
  - Explore how to manufacture coils with different conductors