

AD / Accelerator Physics Center

Radiation Challenges in the FCC-hh Magnets and Highlights from RESMM Workshops

Nikolai Mokhov

Fermilab

First Annual Meeting of the Future Circular Collider Study Washington, DC March 23-27, 2015

Outline

- Sources of Backgrounds and Radiation Loads
- Protecting Collider Components against Radiation
- Operational and Lifetime Radiation Loads
- Synchrotron Radiation at FCC-hh
- FCC-hh vs HL-LHC
- Overview of RESMM Workshops

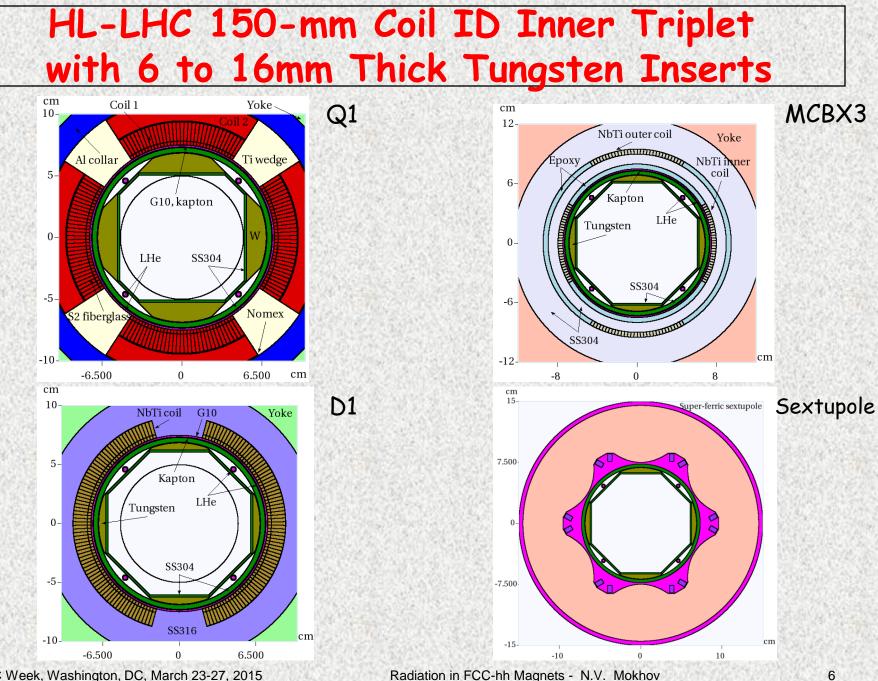
Sources of Detector Backgrounds and <u>Radiation Loads to Magnets in Colliders</u> Collision debris from IP are the major source (>99%) in IRs. The multi-stage collimation system takes care of beam losses in the machine from the majority of other sources. Still the following processes contribute to backgrounds and radiation loads:

- 1. Beam-gas: products of beam-gas interactions in straight sections and arcs upstream of the experiments and after the cleaning insertions
- 2. Tertiary beam halo escaping the collimation systems ("collimation tails")
- 3. Cross-talk between experiments at different IPs
- 4. "Kicker prefire": any remnants of a mis-steered beam uncaptured in the beam dump system
- 5. FCC-hh: synchrotron photons

Collider Magnet Protecting Components

IP Collision Debris:

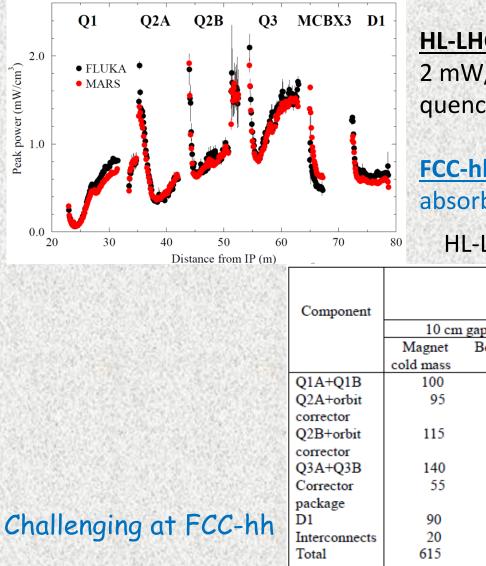
- > 0.95 kW LHC, 4.76 kW HL-LHC and 43.2 kW FCC on each side of IP
- Inner triplet (IT): front absorber (TAS, L~20m), large-aperture quads with tungsten inner absorbers, absorbers in interconnect regions
- Neutral beam dump (TAN, L~147m) and Single-Diffraction collimators in dispersion suppression regions (TCL, L~149 and 190m)
- Beam Loss:


L is a distance from IP1/IP5 in LHC and HL-LHC

- Energy stored in each beam: ~0.3 GJ LHC and >8 GJ FCC
- Betatron and momentum multi-stage collimation systems (L=1/4 C)
- Beam abort system (L=1/8 and 3/8 Circumference)
- > Tungsten tertiary collimators (TCT, L~150m) and TAS (L~20m)
- FCC-hh: intercepting synchrotron photons at elevated temperature

Protecting SC Magnets: Design Constraints

- Quench stability: peak power density in the innermost cable; keep < 40 mW/cm³ and < 13 mW/cm³ in Nb₃Sn and NbTi, respectively; <u>primary criterion at</u> <u>LHC</u>
- Dynamic heat loads: cryo plant capacity and operational cost; keep below 10-15 W/m in cold mass; <u>FCC-hh additionally: 30 W/m/aperture in dipole beam</u> <u>screen</u>


Radiation damage: peak dose on the innermost coil layer over system lifetime (3000 fb⁻¹ at HL-LHC and FCC): keep below 25-35 MGy in insulation and a fraction of DPA in coil inorganic materials; <u>primary</u> <u>criterion at HL-LHC and FCC</u>

FCC Week, Washington, DC, March 23-27, 2015

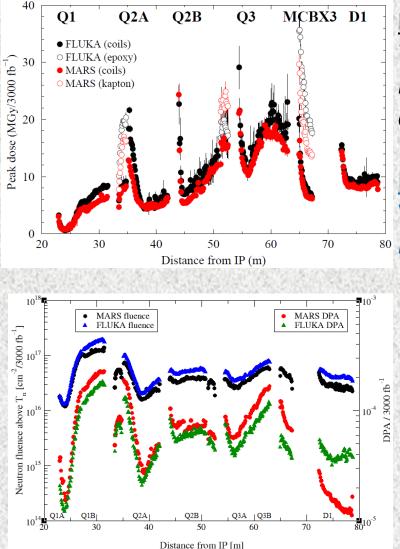
6

Operational Radiation Loads

HL-LHC: The peak value in the quadrupoles, 2 mW/cm³, is 20 times less than the assumed quench limit of 40 mW/cm³ in Nb₃Sn coils

FCC-hh: Same approach with thicker tungsten absorbers

HL-LHC: Integral power dissipation (W) in IT

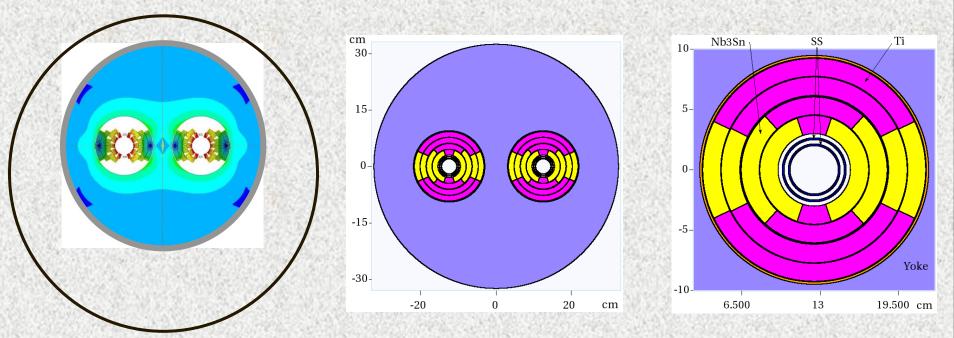

Component		FLU	MARS				
-	10 cm	gap in ICs	n gap in ICs	50 cm gap in ICs			
	Magnet Beam screen		Magnet	Beam screen	Magnet	Beam screen	
	cold mass		cold mass		cold mass		
Q1A+Q1B	100	170	100	170	95	170	
Q2A+orbit	95	60	100	65	100	65	
corrector Q2B+orbit	115	80	120	80	115	80	
corrector Q3A+Q3B Corrector	140 55	80 55	140 60	80 55	135 60	75 65	
package	55	55	00	55	00	65	
D1	90	60	90	60	90	55	
Interconnects	20	140	20	105	15	85	
Total	615	645	630	615	615	600	

Dynamic Heat Loads on Each Side of IP (kW)

	HL-LHC	FCC
¹ / ₂ Detector w/shield	0.385	0.77
TAS	0.615	5.75
Collider	3.76*	36.68
Total	4.76	43.20

* IT(cold mass)+IT(W/screen)+rest = 0.63 + 0.61 + 2.52 = 3.76 kW

Lifetime Radiation Loads

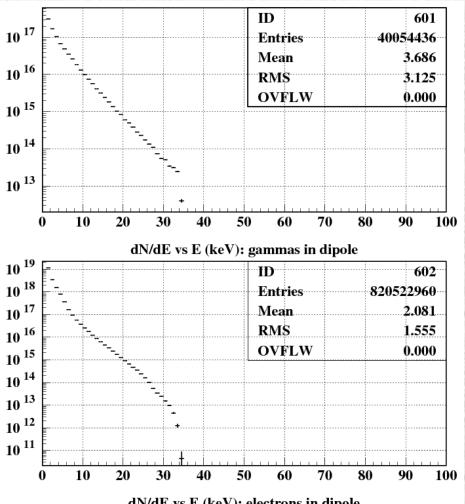

FCC Week, Washington, DC, March 23-27, 2015

<u>HL-LHC:</u> The peak dose in <u>insulation</u> per 3000 fb⁻¹ integrated luminosity is at the design limit; *more R&D work on rad-resistant materials and absorbers is needed to provide safety margin.*

FCC-hh: Brought to the HL-LHC levels with 20-mm
W-absorber for Phase I (see talk by M. Besana).
Further R&D on materials and absorbers.

HL-LHC: The peak in the Q1B inner coil is about 2×10^{-4} DPA per 3000 fb⁻¹ integrated luminosity, should be acceptable for the <u>superconductors</u> and <u>copper stabilizer</u> provided periodic \bigcirc annealing during the collider shutdowns. In the quadrupole coils, the peak fluence is $^{\sim}2 \times 10^{17}$ cm⁻² which is substantially lower than the 3×10^{18} cm⁻² limit used for the Nb₃Sn \bigcirc superconductor, with further R&D for FCC-hh

SyncRad Modeling in FCC-hh Arcs (1)



16-T dual-aperture Nb₃Sn dipole with Ti-collar, in 1-m diameter cryostat envelope (A. Zlobin)

MARS15 model

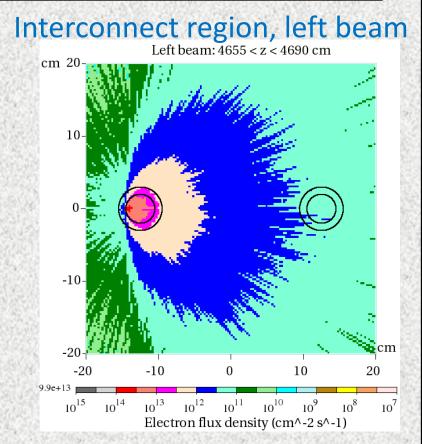
FCC Week, Washington, DC, March 23-27, 2015

SyncRad Modeling in FCC-hh Arcs (2)

dN/dE vs E (keV): electrons in dipole

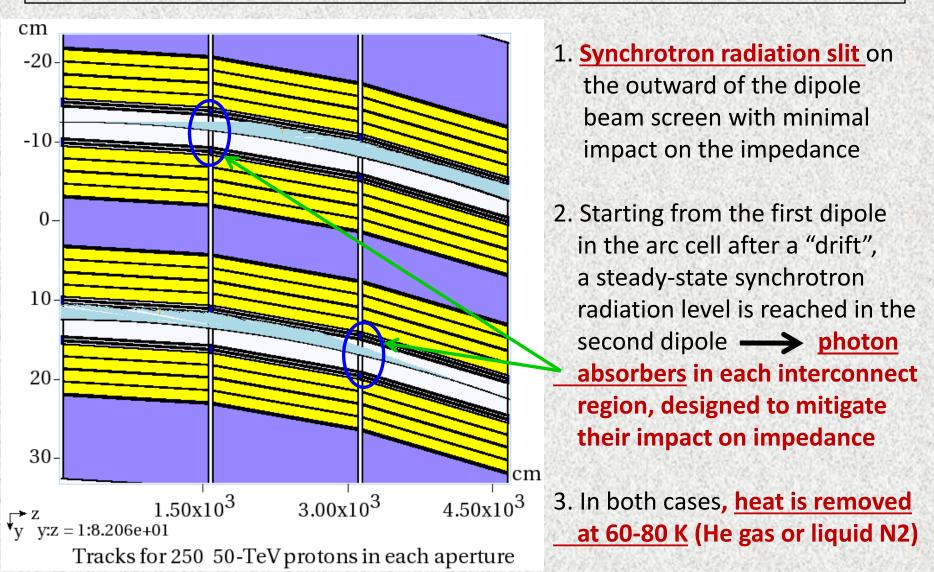
Energy spectra in 1.5-mm SS beampipe

Photon E_c = 4.3 keV. MARS15-calculated spectra in a 1.5-mm SS beampipe of a 16-T dipole span to 35 keV for both photons and electrons.


These result in <u>heat load of ~30 W/m per</u> aperture for 0.5A 50-TeV proton beams.

FCC Week, Washington, DC, March 23-27, 2015

30 W/m Electron Fluxes in Each Aperture


If one does nothing, this heat load is deposited in the beam screen. Fluxes are contained in the outward half of the aperture

Fluxes are spread around, resulting in radiation loads to components in the region

FCC Week, Washington, DC, March 23-27, 2015

Dealing with 30 W/m in FCC-hh Arcs

FCC Week, Washington, DC, March 23-27, 2015

RESMM Workshops: Focus & Topics

The series of annual workshops on "Radiation Effects in Superconducting Magnet Materials (RESMM)" has started at Fermilab in 2012. It focused on establishing radiation damage limits and design of large superconducting systems, for the Mu2e and Comet experiments as well as for HL-LHC, ITER, FRIB and muon collider magnets, covering three major topics:

- Design of superconducting magnets for high radiation environment
- Modeling of radiation effects in magnets and material response
- Benchmarking experiments

RESMM Workshops 2012 & 2013

International Workshop on Radiation Effects in Superconducting Magnet Materials

Feb. 13 – 15, 2012 Fermilab, Batavia, USA

INTERNATIONAL WORKSHOP ON RADIATION EFFECTS IN SUPERCONDUCTING MAGNET MATERIALS

Apr. 15 – 19, 2013 KEK, Tsukuba, Japan

RESMM'12

Organización Michael Elsterer (Afl) Rene Flukiger (CERN) Mike Lamm (FNAL) Nikolai Mokhov (co-chair, FNAL) Tatsushi Nakashima (JAEA) Hiroshi Nakashima (JAEA) Koji Niita (RIST) Toru Ogitsu (co-chair, KEK) Al Zeller (FRIB)

Margie Bruce (FNAL, Meeting secretary)

https://indico.fnal.gov/event/4982

Organizers

Michael Eisterer (ATI) Rene Flukiger (CERN) Mike Lamm (FNAL) Nikolai Mokhov (co-chair, FNAL) Tatsushi Nakamoto (KEK) Hiroshi Nakashima (JAEA) Koji Niita (RIST) Toru Ogitsu (co-chair, KEK) Al Zeller (FRIB)

http://kds.kek.jp/conferenceDisplay.py?confld=11620

FCC Week, Washington, DC, March 23-27, 2015

RESMM Workshops 2014 & 2015

RESMM'15

WORKSHOP ON RADIATION EFFECTS IN SUPERCONDUCTING MAGNET MATERIALS

10-14 May 2015

Hosted by the Facility for Rare Isotope Beams

East Lansing, MI USA

Topics

 Design of superconducting magnets for high radiation environment
Modeling of radiation effects in magnets and material response
Benchmarking experiments

International Organizing Committee

- M. Chorowski, WrUT M. Eisterer, ATI R. Flukiger, CERN M. Lamm, FNAL N. Mokhov, co-chair, FNAL M. Yoshida, KEK
- Y. Iwamoto, JAEA T. Ogltsu, co-chair, KEK
- A. Zeller, FRIB

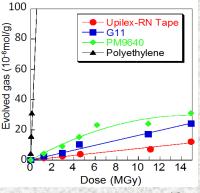
Local Organizing Committee

E. Burkhardt, FRIB A. McCausey, FRIB (Workshop Coordinator) R. Ronningen, FRIB A. Zeller, FRIB

MICHIGAN STATE UNIVERSITY Contact: resmm@frib.msu.edu Abstract Deadline: 2 March 2015 Registration Deadline: 27 April 2015

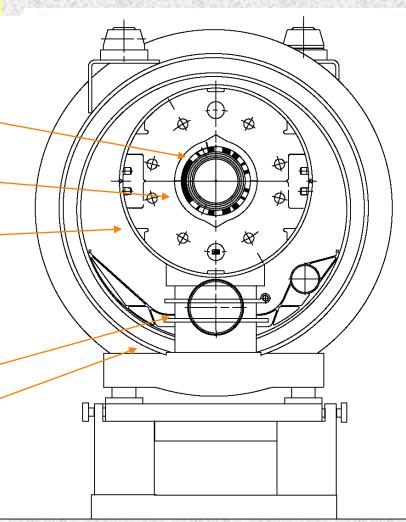
indico fnal.gov/event/resmm15

FCC Week, Washington, DC, March 23-27, 2015


RESMM Workshops: Sessions

The workshops are organized in five major sessions:

- 1. Superconducting Magnets in High Radiation Environment
- 2. Radiation Effects in Magnets
- 3. Modeling Radiation Effects in Magnets and Material Response
- 4. Irradiation Tests and Benchmarking Experiments
- 5. Summary, Discussion, Plans and Action Items


Superconducting Magnets in High Radiation Environment

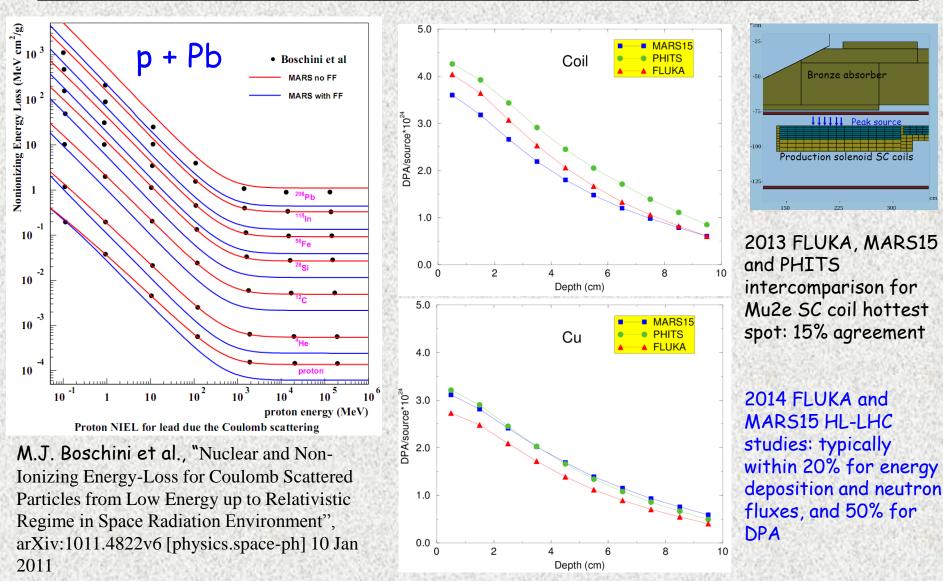
- Uncertainties with radiation damage limits for Nb₃Sn
- The choice of copper vs. aluminum stabilizer
- Concerning the DPA damage, aluminum can be completely repaired with a room temperature annealing, while copper is restored only to ~90%
- The effect of DPA damage has to be understood within the particular magnet application by determining the allowable changes in resistivity, heat capacity and struct. properties between planned annealing cycles
- The programmatic implications of these annealing cycles must be weighed against other design issues such as dynamic heat removal, conductor stability against mechanical disturbances, absorbed dose during the magnet lifetime, as well as fabrication and operation costs
- Advanced insulation materials with very low H₂ yield:

Rad. Loads in J-PARC SCFM System

Computed using MARS 1 w/m, 4000 hr/year Coil (~30kGy/y) GFRP (~10⁷Gy) Polyimide (~10⁷Gy) Plastic Collar (~10kGy/y) Glass Filled Phenol (~10⁷Gy) Super Insulator Body (~200Gy/y) Polyester $(10^5 \sim 10^6 Gy)$ End (~30kGy/y) Polyimide (~10⁷Gy) Support Post (~200Gy/y) **GFRP** (10⁷**Gy**) $O-ring (\sim 200Gy/y)$ EPDM (~10⁶ Gy)

Modeling Radiation Effects in Magnets and Material Response (1)

Substantial progress on Monte-Carlo codes used in this field and understanding of damage phenomena recently made with attention to reliability of simulation tools in four classes:


- 1. Modeling of particle production focusing on those causing the deleterious radiation effects in the magnets
- 2. Quench, integrity and lifetime: power density and integrated dose in critical components, e.g., SC coils, organic materials etc.
- 3. Radiation damage to superconducting, stabilizing and insulating materials: DPA, H2/He gas production, particle flux and dose; <u>linking these to changes in material properties</u>
- 4. ES&H aspects: shielding, nuclide production, residual dose, impact on environment

Modeling Radiation Effects in Magnets and Material Response (2)

In majority of cases integral values on particle yields, energy deposition and radiation field can be predicted with accuracy of < 10-20%. However, uncertainties of a factor of 2 or more still remain for differential values in some phase space regions as well as for values of DPA. Data needs to achieve better accuracy identified for the above four classes:

- Low-E pion/kaon/pbar spectra at E_p=2-7 GeV; neutrons in fragmentation region; light fragment yields; nuclide yields for difficult cases; more ion and photon induced reactions.
- 2. Energy deposition profiles in fine-segmented setups with combination of low-Z and high-Z composite materials for hadron, heavy ions, electron and low-energy neutron dominated cases.
- 3. Annealed vs non-annealed defects, especially at cryo temperatures.
- 4. More reliable data on radiation penetration through composite setups and on radioactivation.

DPA Code Intercomparision

FCC Week, Washington, DC, March 23-27, 2015

Irradiation Tests and Benchmarking

- First direct benchmarking of DPA has been achieved by using the insitu Transmission Electron Microscopy (TEM) ion irradiation tool at ANL. The method introduces disorders in materials in the wellcontrolled conditions while performing real time observation of defects. Powerful tool to validate and verify computer models
- Neutron irradiation tests under cryogenic temperature (10~20 K) for Al and Cu performed at KURRI, Japan. The resistivity degradation and recovery by room temperature annealing were measured (M. Yoshida)

 Irradiation tests on insulation materials at Wroclaw, Poland with electron beams under LN2 temperature. Measurements and criteria to qualify materials and certification standards for mechanical, electric, and thermal performances

Results of Neutron Irradiation Tests at KURRI

	Aluminum								Copper							
	Hora k	Guin an	AI-5N	Al+C uMg	Al+Y 2011	Al+Y 2012	Al+Y 2013	Al+Y 2014	Al+Ni 2013	Al+Ni 2014	Hora k	Guin an	OFHC 2011	OFHC 2012	OFHC 2013	OFHC 2014
RRR	2286	74	3000	450	341, 360	342, 360	-, 368	-, 367	561	566	2280	172	308 (10К)	291 (13K)	285 (13K)	277 (12K)
T _{irr} (K)	4.5	4.2	15	12	12	15	15	14	15	14	4.5	4.2	12	15	15	14
Neutron Source	Reac tor	14 MeV		Reactor					Reac tor	14 MeV	Reactor					
Φ _{tot} (n/m²) (>0.1MeV)	2 x 10 ²²	1-2 x 10 ²¹	2.6 x 10 ²⁰	2.3 x 10 ²⁰	2.6 x 10 ²⁰	2.6 x 10 ²⁰	2.6 x 10 ²⁰	2.7 x 10 ²⁰	2.6 x 10 ²⁰	2.7 x 10 ²⁰	2 x 10 ²²	1-2 x 10 ²¹	2.6 x 10 ²⁰	2.6 x 10 ²⁰	2.6 x 10 ²⁰	2.7 x 10 ²⁰
$\frac{\Delta\rho_{irr}/\Phi_{tot}}{x10^{-2}}$	1.9	4.1	2.5	2.4	2.6, 2.8	2.7, 2.9	2.5	2.2	2.3	2.3	0.58	2.29	0.93	1.02	0.77	0.73
Recovery by thermal cycle	100 %	100 %	100 %	100 %	100 %	100 %	100 %	TBD	100 %	TBD	90%	80%	82 %	92 %	95%	TBD

- Present work shows that difference in RRR (300-3000) of Al doesn't influence the degradation rate or recovery behavior.
 Makoto Yoshida (KEK)
- Partial recovery observed in Cu, but would be saturated after multiple irradiation??

FCC Week, Washington, DC, March 23-27, 2015

Proton Irradiation Tests at FFAG (KURRI)

	Main parameters in the FFAG accelerator						
	# of sectors	12					
	Energy	2.5 - 100MeV					
	Repetition rate	30 - 120Hz					
	Average beam current	1nA					
	Rf frequency	1.5 - 4.6MHz					
-	Field index	7.5					
	Closed orbit radius	4.4 - 5.3m					
34	NO DECIMAL PROPERTY AND AND ADDRESS OF THE SECOND COMPANY AND ADDRESS ADDR	STATES AND ADDRESS AND THE MERICAN					

Irradiation temperatures: 6K – 700 K In-situ fatigue test Post irradiation test Positron annihilation lifetime measurements Electrical resistivity measurement

Materials Irradiation Chamber

Link of Calculated Quantities to Observable Changes

- Link of calculated quantities (DPA, dose, fluence etc.) to observable changes in critical properties of materials in theoretical/modeling studies remains to be a dream
- Promising experiments
 - Low-energy heavy ions at GSI in very clean conditions (although, surface vs bulk damage?)
 - Studies at BNL: 200-MeV protons and fast neutrons at BLIP, and 28-MeV protons at TANDEM (BNL)
 - Kurchatov institute experiments
 - Neutrons at Kyoto reactor at room and cryo temperatures
 - Direct DPA measurements with TEM at ANL
 - Measuring gas production
- Promising developments: kinetic Monte-Carlo
- Meanwhile, rely on phenomenology and correlations