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INTRODUCTION 

•  Future Circular Collider (FCC) 100 TeV collision energy 
–  The main bending dipole magnets have to operate at/near a magnetic field of 16 T 
–  Providing a significant challenge for strand, cable and magnet R&D. 
–  As a first step towards its realisation a cross section parametric layout study is performed 
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Source: http://tlep.web.cern.ch/ 



OPTIMIZATION ALGORITHM 
•  Graded coil designs are necessary (as we will see later) 

–  Iterative algorithm is needed to generate valid layout(s) 
–  Pattern search algorithm is used to find optimal distribution of magnetic field contribution between 

layers 
–  Outside a parametric study is performed 
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CONDUCTOR PERFORMANCE 5 

Nb-Ti 

Nb3Sn 
•  Used scaling relations 

•  Bottura scaling relation for Nb-Ti 
with LHC strand 

•  Godeke scaling relation for Nb3Sn 

•  Cable parameters 
•  Void fraction 0.14 
•  Insulation fraction 0.06 
•  Margin on loadline 20% 

•  About 4K margin for Nb3SN 
•  About 2K margin for Nb-Ti 

•  The Nb3Sn conductor is scaled 
using a factor fNb3Sn 

•  Jcscaled = fNb3Sn . Jc 



QUENCH MODEL 

•  Simple adiabatic model solving time dependent 
•  Current decay (all layers are connected in series) 
•  peak temperature for “quenching layer” (worst taken) 
•  average temperature for each layer 

•  Assumed circuit  
•  No dump resistor such that magnets can be chained 
•  Either Quench Heater or CLiQ (for now conservative LHC values for detection delay times assumed) 

•  Set Copper to Superconductor fraction in each layer such that 
•  Average Temperature Rise is equal between layers (spread out energy as equal as possible) 
•  Peak temperature for all designs is fixed at 200 K (conservative) 
•  Copper to Superconductor fraction has lower limit of 0.6 

•  Effect of the quench model on the magnet layouts 
•  Current density of outer layers is suppressed providing less advantage of grading 

•  Current density in inner part can be higher because we need less copper 
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COST MODEL 

•  Implemented cost model to compare 
different layouts. Included is: 

–  Cryostat 
–  Superconductor 
–  Cabling 
–  Structure 
–  Assembly 

•  Construction cost dominated by the 
superconductor cost 

•  Cost of Nb3SN depends on  
–  copper content  
–  improvement factor 
–  for fcu2sc > 1.65 the copper is no longer part of 

the strands and added separately to the cable 
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RESULTS 
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OPERATING TEMPERATURE AND IMPROVEMENT FACTOR 9 

•  No Iron is used in order to speed up calculations 
•  All layouts are normalized with respect to the <B=16T, f=1.5, T=1.9K, Tq=200K> layout 
•  Different layout shapes are optimal at different fields and conductor improvement factors 
•  For reasonable 16T 20% margin layout we need: 

•  4.2 -> 1.9 K provides additional 1.2 T 
•  fnb3sn 1.0 -> 1.5 provides additional 1 T 

•  Changing the margin is the same as changing the operating magnetic field  
•  i.e. 16 T 14% margin = 15 T 20% margin 
•  If training behaviour is improved the magnet cost is reduced significantly!  

1.9K 4.2K 
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GRADING AND LAYOUT TYPE 10 

•  Grading in the Nb3Sn gives a factor of 2 cost reduction and is a MUST have! 
•  Grading to Nb-Ti gives another factor of 1.1-1.2 cost reduction 

•  Also it fills the high(er) stress region of the coil with Nb-Ti   which is nice (= 

•  This means we need R&D on inter-layer joints (between Nb-Ti and Nb3Sn) 
•  Probably need to resin-impregnate the Nb-Ti layer? 
•  Also note that all decks need to have flared coil ends when grading is used 

1.9K 
1.9K 
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GRADING AND LAYOUT TYPE 11 

•  Block and Cosine-Theta are very similar in 
terms of cost.  

•  Similar shape and positioning of 
conductor (equal grading) 

•  Extra mechanical structure in block 
balances out with wedges needed for 
cosine theta 

•  Block favours wider (higher current) 
cables 

•  Canted Cosine Theta 1.4-1.5 times more 
expensive due to lower packing fraction -> 
less conductor close to aperture 

•  Depends on mechanical structure and 
assembly 

1.9K 



APERTURE SIZE 

•  Expected synchrotron radiation is 50 
watt / m (possibly need more space for 
cooling) 

•  More-or-less linear scaling with the 
aperture size (In agreement with 
analytical predictions) 

•  At high aperture size we get 
fresca-2 like configuration 

•  Larger aperture costs money! 
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ALLOWABLE PEAK TEMPERATURE 

•  The influence of the peak 
temperature on the cost 
–  Default is a conservative 200 K 
–  Lower peak temperatures push 

the cost up hitting a wall at 120 K 
–  The cost barely reduces when the 

peak temperature is increased 
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ACTIVE SHIELDING AND//OR IRON YOKE 14 
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•  After the parametric studies an 
iron yoke was added to the most 
optimal design 

•  Adding the yoke flips the block 
in the corner to Nb-Ti 

–  The iron helps shape the field 
–  Nb-Ti field contribution in aperture 

becomes 7.7 T (was 5.5 T before) 

•  To avoid the yoke from 
becoming large 

–  Either accept more stray field 
–  Place quadrupole active magnetic 

shield coils on the outside of the 
yoke 

•  The yoke reduces the cost of 
the magnets by 17% (due to the 
extra Nb-Ti block) 



CONCLUSION 

•  For a 16 T magnet need both 
–  Operating at 1.9 K provides an additional 1.2 T over 4.2 K 
–  Improving the conductor by 50% is worth about 1 T 

•  Block and Cosine theta are the same in terms of cost Canted Cosine Theta 
is a bit more expensive 

 
•  In this field range grading is necessary to reduce conductor cost 

–  Different current density 
–  Different copper to superconductor fraction 

 
•  Mechanical studies are ongoing to determine structure that allows 

assembly of dual aperture 

15 



16 

THANK YOU FOR 
YOUR ATTENTION 



LETS NOT FORGET ABOUT HTS 

•  We’re building this really cool aligned block insert magnet! 
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