Design Issues of the LHC as Injector

(very) brief overview and status ...

W. Bartmann, B. Goddard, W. Herr, A. Milanese

(many other contributors ..)

Main objective and motivation

High energy injector (HEB) needed for FCC-hh, injection energy $\approx 3.3~\text{TeV}$

- Reuse LHC as existing facility, advantages:
 - Tunnel and infrastructure
 - Experience running at 4 TeV (2012)
 - Ramp and extract two beams, decrease filling time by a factor 2, no polarity reversal needed
- Aim is to minimise the changes

Reuse LHC, main issues

- Extraction systems and beam transfer to FCC-hh required
- Multiple ramps required (3 4 ramps to fill collider)
 - cycle time important (and reliability)

Present ramp rate 10 A/s, dictated by dipoles, some insertion elements limit the ramp speed

- Further assumption: no colliding beam experiment in the baseline
 - \rightarrow low β^* insertions and experiments can be removed, makes it simpler and helps ramp speed

Evaluate main issues

- Possible ramp rate
- Modification to optics (where needed):
 - Replace experimental insertions
 - Modifications for injections
 - Modifications for extractions
- Decommissioning of activated elements (insertions), needs to addressed in more detail

Present Ramp (2012: 4 TeV) - simplified

(courtesy M. Lamont)

- $\approx 60\%$ of the time in linear part: 10 A/s
- Total time pprox 12 minutes per ramp

Possible Ramp (3.3 TeV) - simplified

(courtesy M. Lamont)

- $\approx 60\%$ of the time in linear part: 50 A/s
- Total time pprox 3 minutes per ramp

Ramp rate

- Ramp to 3.3 TeV with 50 A/s feasible
- Quadrupoles can follow dipole ramp rate
- Quench protection not the limit
- Can be handled by cryogenics system
- Needs modified powering

Present layout

- Eight arcs, 4 experimental and 4 utility straight sections
- 4 horizontal crossings

layout and optics

- Beam crossing needed reduce from 4 to 2 crossings, opposite in azimuth, keep path length the same
- Keep auxiliary straight sections unchanged (2*cleaning, beam dump, RF)
- IR3, IR4, IR6, IR7: unchanged
- Modified straight sections:
 - IR1: no low β^* , extraction to collider and beam crossing
 - IR2: no low β^* , injection beam 1
 - <u>IR5:</u> no low β^* , and beam crossing^{*)}
 - IR8: no low β^* , injection beam 2, extraction to collider

^{*)} keep option for low- β^* insertion, but not as base line

Example: Modified straight section - IR5

- Example β_x , previous optics, with and without low β^* , regular FODO*) lattice (arrows indicate dispersion suppressor, unchanged)
- Beams cross horizontally using separation dipoles \longrightarrow allows very large crossing angle (\pm 1.5 mrad, at 7 TeV)

^{*)} Not yet optimized. Alternative: medium β^* with long drift

Example: Modified straight section - IR5

- As before for β_y

Injection into LHC - HEB

- Presently: beam 1 in IR2, beam 2 in IR8 (should remain the same to keep SPS \rightarrow LHC transfer lines)
- Proposed layout for collider: requires injection into the inside rings (presently outside)
- Needs changes to the layouts and optics in IR2 and IR8
- Example IR2: Requires shift of quadrupoles (Q5), septa, kickers (and re-matching of the optics)

IR2 Optics with shifted elements (beam 1)

- Horizontal β before and after shift (after re-matching, not optimised)
- Vertical lines indicate positions of septum and kicker before and after shift

IR2 Optics with shifted elements (beam 1)

- Vertical β before and after shift (after re-matching, not optimised)
- Vertical lines indicate positions of septum and kicker before and after shift

IR1 for extraction

- No low β^* insertion, remove triplet and matching section
- For extraction: assume the layout of beam dump insertion (IR6), should be designed to extract at \geq 3.3 TeV
- For crossing: allow for crossing at 7 TeV, assume use of 4 separation dipoles (provide \geq 3 mrad)
- Sufficient space needed (mechanical separation 0.194 m $\Rightarrow \approx 80$ m)
- Provide space by moving quadrupoles -> 88 m available, need re-matching

Non base-line options

- Allow possibility for extraction towards a fixed target experiment
- Option for a (small) colliding beams experiment:
 - Luminosity \geq 0.5 10^{35} cm⁻² s⁻¹, no crab crossing
 - Assuming HL-LHC parameters for emittance and intensity ($\epsilon_n = 2.5 \ \mu \text{m}$, N = $2.2 \ 10^{11} \ \text{p/bunch}$):
 - Luminosity is feasible with $\beta^* = 0.15$ 0.40 m
 - Polarised beams ??

Summary ...

- The reuse of the LHC as High Energy Booster was studied
- Initial studies show the feasibility:

Filling time (number of injections, ramp rate) fulfil the requirements

Proposals for minimum changes to the LHC configuration and lattice seem feasible (injection, extraction, crossing)

- Other issues: decommissioning of activated elements?

- BACKUP SLIDES -

