
Software for
FCC Physics and Experiments

B. Hegner, CERN

for the FCC Experiment Software Team

FCC Week 2015

Washington DC

Driving Considerations

2

• Provide robust software to allow physics studies for CDR in 2018

• Support all FCC-ee, -eh, and -hh communities at the same time

– Requires flexibility for Geometry and Simulation

• Start pragmatically

• As studies progress move to more sophisticated solutions

– Allow components to be replaced later on

• FCC software effort relies on effort of other people

– There is a give and take

– Aim for, but don’t blindly force, synergy with other communities

The Power Wall - Importance of Parallelism

3

• In the past speed increase happened

automatically - just wait for your next PC

• That is over now!

• New CPU improvements

go into parallelization

• Clock speed will not increase

because of power consumption:

• Need to adapt our software to parallel HW architectures right from the start

– Otherwise we waste the computing resources we urgently need

Power / Frequency

3

The Memory Wall - Getting data is slow

4

• Back in the 70’s memory used

to be faster than CPUs.

• Nowadays, memory compared to CPUs

is incredibly slow!

• Mitigated by introducing more and more

levels of caches in hardware

• Need to adapt our SW design to the physical memory hierarchy

Basic concepts in computer architectures

8 iCSC2015, Pawel Szostek, CERN

What changed since 70’s?

� Back in 1970s memory used to be faster than CPUs

� Nowadays, memory compared to CPUs is incredibly slow

Our problem
is growing

Basic concepts in computer architectures

11 iCSC2015, Pawel Szostek, CERN

Let’s speed up the memory

� Problem: fast memory is expensive

� Solution: introduce memory hierarchy, with a fast memory on the
top and slow on the bottom

source: Jens Teubner “Data processing on modern hardware”

Basic concepts in computer architectures

11 iCSC2015, Pawel Szostek, CERN

Let’s speed up the memory

� Problem: fast memory is expensive

� Solution: introduce memory hierarchy, with a fast memory on the
top and slow on the bottom

source: Jens Teubner “Data processing on modern hardware”

Future Challenges

5

• Architecture landscape is changing heavily

– Dominance of x86 coming to an end

– ARM, GPUs, ...

• Software technology itself progresses

– New programming languages and paradigms

– Even C++ going through rapid evolution (C++11, 14, 17, ...)

• We cannot know what will be there by the time of FCC

– but we know that the relative stability of the

last two decades is over

The Present

6

• Adapt existing solutions from LHC

– Gaudi as underlying framework

– ROOT for I/O

– Geant4 for simulation

– C++ and Python for user analysis

• Adapt software developments from ILC/CLIC

– DD4Hep for detector description

• Invest in better fast vs. full sim integration

– Geant4 fastsim, Atlfast (ATLAS)

• Invest in proper future-proof data model

– The LHC experiments’ ones are over-engineered

– The ILC/CLIC model (LCIO) was designed before power and memory wall

Gaudi Event Processing Framework

7

• Gaudi is an event-independent data processing framework

– Used by LHCb, ATLAS, and a few smaller experiments

• Based on the concept of a software bus

• Work is split up in interdependent “algorithms”

• Parallelization effort with “GaudiHive” to take advantage of ever

increasing hardware parallelization

Input Processing Output

FCC Simulation

8

• FCC Software needs to support the studies of multiple detectors

• At different stages different level of detail required

– Smearing vs. fast sim vs. full sim

• FCC choices are

– Delphes (*) and HepSim (**)

– Fast simulation in Python

– Integrated fast/full simulation with Geant4

• Should all be accessible from within the same framework

(*) http://delphes.hepforge.org
(**) http://atlaswww.hep.anl.gov/hepsim/

http://delphes.hepforge.org
http://delphes.hepforge.org
http://atlaswww.hep.anl.gov/hepsim/
http://atlaswww.hep.anl.gov/hepsim/

Detector Description

9

Detector Description in LHC experiments is a not-well organized
environment

• Detectors modeled long ago and expertise largely gone

• Work on upgrade reveals weaknesses

• Heterogeneous setups even within experiments

ILC/CLIC efforts triggered the project DD4hep (*)

• Covering simulation, display, alignment in a consistent way

FCC joined these efforts of DD4hep

• Good support by developers!

• Working on first test-detector

Fast Simulation

10

• Goal is to have a combined fast and full simulation

– Decide at the config level where to do what

• (Semi-) automatic extraction of fast simulation parameters from

full simulation

– To be able to do fast-sim for any detector design

• Though not re-inventing the wheel,

we are heavily re-designing it

Simulation Status

11

• First development phase was focussed on producing a

demonstrator

– Using expertise from ATLAS and Geant4 developers

– Chosen approach worked out nicely

– Results now being integrated into Geant4 and Gaudi

Data Model I

12

The FCC requirements for a good data model are not special at all:

• Simplicity

• Flexibility

• Completeness

Data Models of LHC experiments are proven to work

• Fairly complex, and very detector specific beasts

The ILC community has a simple, but complete data model (LCIO)

• Needs adaption to allow direct ROOT access outside FWK

• Parallelism and memory optimization not part of the core design

• Developers interested in extension and one should take advantage of it

The proper data model is essential for allowing good results

 Thus it is worth investing here with a new project!

Data Model II

13

• ROOT as first choice for I/O

• No deep object hierarchies

– Wherever possible concrete types

• Simple memory layout

– Employ simple structs instead of fat objects

– Helps with parallelization

• Allow access from Python and C++

– Only loose coupling with event processing framework

• Quick turnaround for improvements

– Employ code generation

• Wrote a demonstrator data model

– Used throughout all developments now

Analysis

14

• Analysis should be easy and powerful

• Lesson from LHC experiments and ILC/CLIC

– If setup is too complex, physicists stop using common software and

create their own mini-frameworks

• Physicists will join from different experiments and we need to

make the transition as easy as possible

• Need to allow multiple paradigms to do analysis

– C++ and Python

Analysis in Python

15

• Very	
 large	
 user	
 base	

• Super	
 easy	
 to	
 learn
• Light	
 &	
 short	
 code
• Good	
 performance
– usually	
 wraps	
 C	
 or	
 C++	
 modules

• «	
 Ba?eries	
 included	
 »
– massive	
 and	
 easy-­‐to-­‐use	

standard	
 library

• Dynamic	
 typing	

– good	
 for	
 mulDchannel	
 analyses
– code	
 highly	
 reusable

• Dynamic	
 object	
 modificaDon
– Can	
 a?ach	
 new	
 a?ributes	
 (or	
 methods)	
 to	
 an	

exisDng	
 object

• ProducDvity	
 x	
 5-­‐10	
 w/r	
 C++
• A	
 lot	
 of	
 fun!

• SupporDng	
 this	
 with	
 the	
 heppy	

package	
 originaDng	
 from	
 CMS

Fast Simulation with Python

16

• Fast simulation for prototyping of of high-level algorithms

– Written in Python it allows quick turn-around

• Uses the same data model as the C++ framework

– Lowers the bar when moving to production code

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

xy

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

yz

FCC
Particle Flow
Prototyping

Where are we now?

17

• Established common FCC experiment software project

• Base software environment in place

• First phase of pick & chose is finished

• Integrated fast/full sim design validated

• Data Model demonstrator finished

• C++ and Python based analysis environment provided

Volunteers needed!

18

• Framework
– Core	
 event	
 data	
 model,	

Gaudi	
 integraDon,	
 SoUware	
 stack	

• Generators
– IntegraDon

• SimulaDon	
 infrastructure
– Geant4	
 (fast	
 &	
 full)

– Delphes	
 integraDon

• ReconstrucDon

• Analysis	
 tools
– python	
 &	
 C++	
 framework

• ValidaDon	

– tesDng	
 and	
 performance

• CompuDng
– sample	
 producDon	
 and	
 management

Bernet,	
 Hegner

Pilicer,	
 People	
 needed

CarminaD,	
 Dell’aqua,	
 Hrdinka,	
 Salzburger,	

Zaborowska

De	
 Gru?ola,	
 Hegner

People	
 needed

Bernet

Hegner	
 ,	
 People	
 needed

People	
 needed

Many thanks to our
hard working team!

