SPONSORED BY THE

Federal Ministry of Education and Research

FCC-ee: Lattice optimization and emittance tuning

Bastian Haerer (CERN, Geneva; KIT, Karlsruhe) for the FCC-ee lattice design team

FCC-Week 2015, Washington, D.C. 23-27 March 2015

FCC-ee: Lattice optimization and emittance tuning Bastian Haerer (bastian.harer@cern.ch)

1

Physics goals of FCC-ee

Main physics programs / energies (+ scan around central values):

 \succ H (120 GeV): H production, t (175 GeV): tt threshold.

> Z (45.5 GeV): Z pole, high precision of M_Z and Γ_Z . \succ W (80 GeV): W pair production threshold,

All energies quoted

refer to BEAM energies

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Challenges: the parameter list

	Ζ	W	Н	tt
Beam energy [GeV]	45.5	80	120	175
Beam current [mA]	1450	152	30	6.6
Bunches / beam	16700	4490	1330	160
Bunch population [10 ¹¹]	1.8	0.7	0.46	0.83
Transverse emittance ε - Horizontal [nm] - Vertical [nm]	29.2 0.06	3.3	0.94	2
Momentum comp. [10 ⁻⁵]	18	2	0.5	0.5
Betatron function at IP β*-Horizontal [mm]-Vertical [mm]	500 1	500 1	500	1000
Energy loss / turn [GeV]	0.03	0.33	1.67	7.55
Total RF voltage [GV]	2.5	4	5.5	11

- Design & optimise a lattice for 4 different energies
- Horizontal emittance is increasing with reduced energy
- Extremely small vert. beta* (β_y* = 1 mm)
 → High chromaticity
 → Challenging dynamic aperture
- High synchrotron radiation losses include sophisticated absorber design in the lattice

FCC-Week 2015, Washington, D.C. 23-27 March 2015

175 GeV: Arc FODO cell

Completely symmetric!

Layout already considers space for absorbers, flanges etc.

B = bending magnet, Q = quadrupole, S = sextupole

 $N_{dipoles} = 6152$ (192 half bend) ($\rho \approx 9.79$ km, $\theta = 1.02$ mrad, B = 60 mT)

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Arc FODO cell: Optics

FCC-Week 2015, Washington, D.C. 23-27 March 2015

CERN

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Horizontal Dispersion

FCC-Week 2015, Washington, D.C. 23-27 March 2015

β functions

FCC-Week 2015, Washington, D.C. 23-27 March 2015

β functions II

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Emittance tuning for lower beam energies

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Motivation

Beam energy (in GeV)	Horizontal emittance (50 m cell lattice) (in nm rad)	Horizontal emittance (baseline) (in nm rad)		
175.0	1.00	2.00		
120.0	0.49	0.94		
80.0	0.22	3.30		
45.5	0.07	29.20		

$$e_x \mu g^2$$
 (γ = Lorentz factor)

FCC-Week 2015, Washington, D.C. 23-27 March 2015

CERN

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Changing the horizontal emittance for lower energies

There are two different possibilities:

Court. B. Holzer

- 1) Change the phase advance Ψ of the FODO cell
 - → Larger emittance: smaller phase advance
- 2) Change the cell length

→Larger emittance: increase cell length

Changing the cell length

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Feasible Lattice Changes

80 GeV beam energy:

Cell length L	Phase advance Ψ_x	Emittance ε _x
Baseline parameter:		1.65 nm × 2
50 m	45°	1.50 nm (analyt.)
100 m	90°	1.74 nm (analyt.)

45.5 GeV beam energy:

Cell length L	Phase advance Ψ_x	Emittance ε _x
Baseline parameter:		14.60 nm × 2
200 m	60°	13.56 nm (analyt.)
250 m	72°	15.91 nm (analyt.)
300 m	90°	15.24 nm (analyt.)

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Examples: Different cell lengths

175 GeV and 120 GeV:
$$L_{cell}$$
 = 50 m, Ψ = 90°/60°

80 GeV: L_{cell} =50 m, $\Psi_{x,y}$ =45°

FCC-Week 2015, Washington, D.C. 23-27 March 2015

80 GeV: L_{cell} =100 m, Ψ_x =90°

FCC-Week 2015, Washington, D.C. 23-27 March 2015

45.5 GeV: L_{cell} =300 m, Ψ_{x} =90°

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Emittance tuning: Results

80 GeV beam energy

Cell length in arc (m)	50	100	Baseline
Phase advance in arc cell	45°/45°	90°/60°	parameter
Horizontal emittance (nm)	1.47	1.70	2 x 1.65

45.5 GeV beam energy

Cell length in arc (m)	200	250	300	Baseline
Phase advance in arc cell	60°/60°	72°/72°	90°/60°	parameter
Horizontal emittance (nm)	12.5	14.5	14.2	2 x 14.6

FCC-Week 2015, Washington, D.C. 23-27 March 2015

- Several lattices with different cell length and phase advance were proposed
- Final choice requires further investigation Work in progress!
 - \rightarrow Misalignment studies, coupling
 - \rightarrow How much does horizontal emittance increase?
 - \rightarrow Calculation of the distorted orbit and vertical emittance
- Fine tuning wigglers required: \rightarrow Damping, excitation, Robinson?

Chromaticity correction in the arcs – first approach

FCC-Week 2015, Washington, D.C. 23-27 March 2015

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Mini-beta insertions

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Chromaticity

- Change of the tune with energy deviation
- **Textbook**: $DQ = x \cdot Dp / p$
- In our case not precise enough: (d = Dp / p) $Q(d) = Q_0 + \frac{\P Q}{\P d} d + \frac{1}{2} \frac{\P^2 Q}{\P d^2} d^2 + \frac{1}{6} \frac{\P^3 Q}{\P d^\beta} d^\beta + \dots$

FCC-Week 2015, Washington, D.C. 23-27 March 2015

FCC-ee: Natural Chromaticity

	no IRs	4 IRs	ΔQ (δ=1.5 %)
Q _x	498.85	502.16	
Q _x '	-554.93	-603.80	-9.06
Q_x"	1587.57	-8258.29	-0.93
Q_x""	-8071.77	-1.4e+08	-79.31
Q_,,	-3.27e+09	-2.1e+12	-4.43e+03
Qy	331.24	334.28	
Q _y '	-458.98	-2044.43	-30.67
Q _y "	1086.30	-8.4e+06	-944.12
Q _y ""	-4547.47	-2.0e+11	-1.10e+05
Q _y ""	-3.62e+09	-6.5e+15	-1.37e+07

 $Q(\delta) = Q_0 + Q' \delta + Q'' \delta^2/2 + ...$

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Montague functions

Chromatic variables

$$B = \frac{1}{b} \frac{\P b}{\P d} \qquad A = \frac{\P a}{\P d} - \frac{a}{b} \frac{\P b}{\P d} \qquad \text{Final Focus Quad:} \\ A \land \Delta A \cong -\beta_0 \, k_0 \, l_q \qquad \text{Sextupole:} \\ \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \quad d_x \, l_s \quad d_x \, l_x \,$$

Rotates with twice the phase advance!

FCC-Week 2015, Washington, D.C. 23-27 March 2015

FCC-ee sextupole scheme

 $\mu_x = 180^\circ = \pi$ (\rightarrow -I transformation)

Even number of sextupoles per family!

FCC-Week 2015, Washington, D.C. 23-27 March 2015

-I transformation

 Sextupoles of each family are in phase

→ W-vector
 rotates by 2π

FCC-Week 2015, Washington, D.C. 23-27 March 2015

W functions for 1 quarter

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Momentum acceptance

FCC-Week 2015, Washington, D.C. 23-27 March 2015

"Corrected" Chromaticity

	Nat. Chrom.	Corr. Chrom.	ΔQ (δ=0.05 %)
Q _x	502.16	502.16	
Q _x '	-603.80	5.7e-05	2.83e-08
Q _x "	-8.3e+03	3.5e+03	4.41e-04
Q,""	-1.4e+08	-5.5e+05	-1.14e-05
Q_,""	-2.1e+12	-8.5e+09	-2.20e-05
Q _y	334.28	334.28	
Q _y '	-2044.43	2.8e-01	1.39e-04
Q _y "	-8.4e+06	-1.2e+04	-1.53e-03
Q _y ""	-2.0e+11	-3.4e+09	-7.00e-02
Q _y ,""	-6.5e+15	3.6e+10	9.25e-05

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Anton Bogomyagkov

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Advantage of local CCS

^{*} Using one quarter of the ring

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Next steps

Optimization of the Chromaticity Correction Scheme

- Improve 3rd order chromaticity correction
- Find best combination of local chromaticity correction and arc sextupoles
- Optimization of the tune, phase advance

Chromaticity Correction Scheme for Low Energy Lattices

• Same chromaticity, less sextupoles in the arc available

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Other ongoing studies

- Interaction Region Design
 - → Anton Bogomyagkov (BINP), Roman Martin, Rogelio Tomas (CERN)
- Alignment tolerances, coupling, vertical emittance calculations
 → Sandra Aumon, Andreas Doblhammer (CERN)
- Dynamic aperture studies

 → Pavel Piminov (BINP), Luis Medina, Rogelio Tomas (CERN)
- Solenoid compensation scheme
 → Sergey Sinyatkin (BINP)

Very much progress in the first year!

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Thank you for your attention!

SPONSORED BY THE

Federal Ministry of Education and Research

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Courtesy to Jörg Wenninger

Lattice modules

... used for FCC-ee:

Abbreviation	Generic name	Number	Length (km)
LSS	Long straight section	6	1.4
ESS	Extended straight section	2	4.2
TSS	Technical straight section	4	?
SARC	Short arc (incl. DS)	4	4.0
LARC Long arc (incl. DS)		8	depends on circumference
P. Lebrun & J. Osborne			(Version 16: 7.7)

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Energy sawtooth (Ideal lattice)

12 RF sections

4 RF sections

Energy loss per turn: $U_0 = 7.72 \text{ GeV}$

FCC-Week 2015, Washington, D.C. 23-27 March 2015

W functions comparison

CERN

FCC-Week 2015, Washington, D.C. 23-27 March 2015

Vertical W-function in Arc 1

Щ

FCC-Week 2015, Washington, D.C. 23-27 March 2015

FCC-Week 2015, Washington, D.C. 23-27 March 2015