I-Ring / 2-Ring Issues

25 March 2015 @ FCC Week 2015

K. Oide (KEK)

I thank W. Chou, M. Koratzinos, and F. Zimmermann for materials.

History

表 1: 世界の主な衝突型加速器

加速器	所在地	粒子	型 a	ビ ー ムエ ネルギ ー (GeV)	ルミノシテ ィ $(10^{30} \text{cm}^{-2} \text{s}^{-1})$	年(衝突実験)		
AdA	Frascati (伊)	e^{+} / e^{-}	S	0.25	$\sim 10^{-5}$	1962		
VEP-I	Novosibirsk (露)	e ⁻ / e ⁻	D	0.13	~ 0.001	1963-1965		
CBX	SLAC (米)	e ⁻ / e ⁻	D	0.5		1963-1968		
ACO	Orsay (仏)	e^+ / e^-	S	0.5	0.1	1966		
Adone	Frascati (伊)	e^+ / e^-	S	1.5	0.6	1969-1993		
ISR	CERN (スイス)	р/р	D	3.2	130	1971-1983		
SPEAR	SLAC (米)	e^+ / e^-	S	4	12	1972-1990		
VEPP-2/2M	Novosibirsk (露)	e^+ / e^-	S	0.7	13	1974-		
DORIS	DESY (独)	e^+ / e^-	D	5.6	33	1974-1993		
DCI	Orsay (仏)	e ⁻ / e ⁻	D	1.8	2	1976-2003		
PETRA	DESY (独)	e^+ / e^-	S	19	30	1978-1986		
VEPP-4M	Novosibirsk (露)	e^+ / e^-	S	7	50	1979-		
CESR	Cornell (米)	e^+ / e^-	S	6	1,300	1979-2002		
PEP	SLAC (米)	e^{+} / e^{-}	S	15	60	1980-1990		
$\mathrm{Sp}\overline{\mathrm{p}}\mathrm{S}$	CERN (スイス)	p / \overline{p}	S	315	6	1981-1990		
TRISTAN	KEK(日)	e^+ / e^-	S	32	37	1986-1994		
Tevatron	Fermilab (米)	p / \overline{p}	S	980	400	1987-2011		
BEPC	IHEP(中)	e^+ / e^-	S	2.2	13	1989-2005		
LEP	CERN (スイス)	e^+ / e^-	S	46	24	1989-1994		
SLC	SLAC (米)	e^+ / e^-	L	46	3	1989-1998		
HERA	DESY (独)	e [±] /p	D	30 / 920	75	1992-2007		
$DA\PhiNE$	Frascati (伊)	e^+ / e^-	D	0.7	440	1997-		
LEP2	CERN (スイス)	e^+ / e^-	S	105	100	1995-2000		
PEP-II	SLAC (米)	e^+ / e^-	D	3.1 / 9	12,000	1999-2008		
KEKB	KEK(日)	e^+ / e^-	D	3.5 / 8	21,100	1999-2010		
RHIC	BNL(米)	重イオン	D	100/n	0.003	2000-		
CESR-c	Cornell (米)	e^{+} / e^{-}	S	1.9	60	2002-2008		
VEPP-2000	Novosibirsk (露)	e^{+} / e^{-}	S	0.5	120	2006-		
BEPCII	IHEP(中)	e^{+}/e^{-}	D	2.1	710	2007-		
LHC	CERN (スイス)	р/р	D	4,000	7,700	2008-		

(PEP-II, KEKB)/CESR \approx (9, 16)

BEPC-II/BEPC ≈ 55

[LHC/Tevatron ≈ 19]

^a S: 単リング, D: 複リング, L: 線形

b 金·金衝突時

Luminosity formula

$$\mathcal{L} \approx \frac{1}{2er_e} \left(\frac{\gamma I \xi_y}{\beta_y^*} \right)_+ \left(\frac{R_{\mathcal{L}}}{R_y} \right) \tag{flat beam}$$

• There is no explicit dependence of luminosity on the number of bunches or rings in the above, but...

Beam-beam parameter by parasitic crossings:

$$\xi_{x,y}^{\rm PC} = \mp \sum \frac{r_e N}{2\pi\gamma R^2} \beta \approx \mp \frac{r_e N N_b}{2\pi\gamma n_{\rm sep}^2 \varepsilon_x} = \mp \xi^{\rm PC} \text{by assuming all PCs}$$

are equivalent.

 R, β : horizontal separation, β at PC

$$R = n_{\rm sep} \sqrt{\beta \varepsilon_x}$$

N: particles/bunch

 N_b : bunches/ring

Then the luminosity is expressed as:

$$\mathcal{L} = \frac{\pi c}{C} \left(\frac{\gamma n_{\text{sep}}}{r_e} \right)^2 \frac{\xi_y \xi^{\text{PC}} \varepsilon_x}{\beta_y^*}$$

C: circumference

$$\mathcal{L} = \frac{\pi c}{C} \left(\frac{\gamma n_{\text{sep}}}{r_e} \right)^2 \frac{\xi_y \xi^{\text{PC}} \varepsilon_x}{\beta_y^*}$$

With the FCC-ee numbers at Zh:

$$\mathcal{L} = \frac{c\pi}{r_e^2} \left(\frac{100 \text{ km}}{C}\right) \left(\frac{\gamma}{(120 \text{ GeV})}\right)^2 \left(\frac{n_{\text{sep}}}{5}\right)^2 \left(\frac{\xi_y}{0.1}\right) \left(\frac{\xi^{\text{PC}}}{0.1}\right) \left(\frac{\varepsilon_x}{1 \text{ nm}}\right) \left(\frac{1 \text{ mm}}{\beta_y^*}\right)$$

$$= 1.6 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$$
FCC-ee: 5e34/IP

And at Z:

$$\mathcal{L} = \frac{c\pi}{r_e^2} \left(\frac{100 \text{ km}}{C}\right) \left(\frac{\gamma}{(46 \text{ GeV})}\right)^2 \left(\frac{n_{\text{sep}}}{5}\right)^2 \left(\frac{\xi_y}{0.1}\right) \left(\frac{\xi^{\text{PC}}}{0.1}\right) \left(\frac{\varepsilon_x}{29 \text{ nm}}\right) \left(\frac{3 \text{ mm}}{\beta_y^*}\right)$$
$$= 2.3 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$$
FCC-ee: 27e34/IP

ξ^{PC} ~ 0.3 was achieved at CESR:

M. Palmer et al, Snowmass 2001

Figure 1: Calculated tune shifts in one beam due to the LRBBI with the opposing beam are shown in the bottom two plots. There are 9, 5-bunch trains with 7.5 mA/bunch in each beam and 14ns bunch spacing. The revolution frequency is $f_{rev} = 390.1 \text{kHz}$. The difference in the vertical orbits at the IP for the two beams is shown in the top plot.

More possible issues with pretzel:

Orbit stability:

- The closed orbit is distorted by the parasitic crossings, and the magnitude depends on the bunch current.
- Even with a top-up operation, each bunch current varies due to the short lifetime.
- The disturbed orbit will be different bunch by bunch, so as the optics of each bunch.
- With the FCC-ee Zh parameter:

$$\frac{\langle \Delta x^2 \rangle}{\beta \varepsilon_x} \sim \frac{4\pi r_e}{\gamma \varepsilon_x} N \xi^{\text{PC}} \left(\frac{\Delta N}{N}\right)^2$$

$$\approx (12\%)^2$$
 with $N = 10^{11}$, $\Delta N/N = 10\%$, $\xi^{PC} = 0.1$.

can be significant for $\xi^{PC} \gg 0.1$

More possible issues with pretzel:

Optics deformation:

- Optics is deformed by the pretzel, due to orbit shift in sextupoles.
- If we switch the polarity of pretzel across the IP, it may be possible
 to correct the deformation for the both beams simultaneously, by
 confining the deformation within an arc.
- The local CCS is common, it does not leak the deformation outside due to -1, except for the dispersions.
- If arc sextupoles are all paired with -1, only dispersion leak matters.
- The energy sawtooth will complicate the issue, but its magnitude is less than the pretzel anyway.
- Bunch-by-bunch deformation needs attention.
- "Wire compensation of PC" can be conceivable, but it does not solve this issue nor the orbit fluctuation.

Bunch train scheme for the CEPC

15/2/2015

Mike Koratzinos

The scheme

- One beam pipe in the arcs
- Electrostatic separators in two straight sections around the two experiments. Magnetic elements take over when separation is sufficient.
- Slightly longer straight section than the rest of the straight sections: 2km compared to ~800m
- RF still in single pipe
- Freedom to use interaction region scheme: crab waist, small crossing angle, etc.
- Avoids Pretzel scheme altogether
- RF loading is not uniform (4% full ring, 96% empty)
- Extra cost: 4kms in 50kms with double beam pipe

If RF load problems, next suggestion with 4 separation points

	Double Ring	Single Ring Pretzel	Bunch Train Separation
Common Arc			
Parasitic crossing			
Orbit stability			
Common Local CCS			
Common RF			
RF uneven loading			
Electrostatic Separators			
Optics deformation			
E-cloud / ions			only in separated sections
Energy sawtooth	solvable 😩	23	2

Discussions

- A single-ring scheme with pretzel is cheaper in construction, but the overall cost to achieve the goal of integrated luminosity is not necessarily cheaper.
- The complexity in the design and operation may severely limit the performance of the pretzel scheme.
- The bunch-train separation scheme can be a good compromise, but may not have an ultimate performance esp. for Z/WW modes.