Beam-beam studies for FCC-ee

K. Ohmi (KEK) FCC week@Washington Mar. 23-27, 2015

Thanks to D. Shatilov, Y. Zhang and F. Zimmermann

Simulation Codes

Y. Zhang, CEPC review 2015

• LIFETRAC by D. Shatilov (BINP),

Quasi-strong-strong method is used: Selfconsistent beam size and dynamic beta/emittance (Gaussian Fit)

• BBWS/BBSS by K. Ohmi (KEK),

Weak-strong sim. with self-consistent σ_z and

 σ_x , or Strong-strong sim.

• IBB by Y. Zhang (IHEP)

What we can do by simulations at present

- Luminosity evaluation using simplified lattice, in which arc transformation is represented by 6x6 transfer matrix.
 - Effects of Lattice nonlinearity were small for KEKB, but is important in SuperKEKB with very low β_v^* (0.3mm) and complex IR.
- Lifetime evaluation taken into account of beamstrahlung. Determine momentum and betatron acceptance requirement.

Beamstrahlung

- Synchrotron radiation during beam-beam collision
- Beam-beam force and curvature of orbit $\Delta p_{x,y} \approx \frac{Nr_e}{\gamma} \frac{1}{\sigma_x + \sigma_y} \qquad \frac{1}{\rho_{xy}} = \frac{\Delta p_{x,y}}{\Delta s} = \frac{4Nr_e}{\sqrt{2\pi\gamma}} \frac{1}{(\sigma_x + \sigma_y)\sigma_z}$ $-\rho = 23.5/19.7 \text{m} << \rho_{\text{bend}} = 6,094/11,000 \text{m} \text{ (CEPC/TLEP)}$ $- \text{u}_c = 164/194 \text{ MeV}, \text{ N}_{\gamma} = 0.21/0.092$
- Formulae for energy spread due to beamstrahlung $\langle d\delta_{RS} \rangle = n_z \langle u \rangle / E_0 = 0.864 r^3 \gamma \left(\frac{N_e}{1 - N_e} \right)^2 \frac{\sigma_z}{1 - \sigma_z}$

$$\langle d\delta_{BS} \rangle = n_{\gamma} \langle u \rangle / E_{0} = 0.864 r_{e}^{s} \gamma \left(\frac{\sigma_{z}}{\sigma_{z}(\sigma_{x} + \sigma_{y})} \right) \frac{1}{\sqrt{1 + \left(\frac{\theta_{c}\sigma_{z}}{\sigma_{x}} \right)^{2}}} n_{\gamma} = 2.12 \frac{\alpha r_{e} N_{e}}{\sigma_{x} + \sigma_{y}} \frac{1}{\sqrt{1 + \left(\frac{\sigma_{z}\theta_{c}}{\sigma_{x}} \right)^{2}}} \sqrt{1 + \left(\frac{\sigma_{z}\theta_{c}}{\sigma_{x}} \right)^{2}} \sqrt{\sqrt{1 + \left(\frac{\sigma_{z}\theta_{c}}{\sigma_{x}} \right)^{2}}} \sigma_{\delta,tot} = \sqrt{\sigma_{\delta,SR}^{2} + \sigma_{\delta,BS}^{2}} \sqrt{\langle \delta_{BS} \rangle^{2}} = \langle d\delta_{BS} \rangle \sqrt{0.1639 + \frac{5.129}{n_{\gamma}}}$$
 $\sigma_{z,tot} = \sigma_{z,SR} \sigma_{\delta,tot} / \sigma_{\delta,SR}$

Schematic view of the simulation

- Calculate trajectory interacting with colliding beam.
- Particles emit synchrotron radiation due to the momentum kick dp/ds.

Example of simulation

Luminosity evolution in a strong-strong simulation.

Lifetime evaluation

- High energy photon emission due to beamstrahlung induces beam halo in longitudinal.
- Two methods are used on the simulations
 - direct count beam loss
 - evaluate from equilibrium beam distribution (M. Sands)

Analytic formula (Telnov, Bogomyagkov)

$ au_{ m bs,Telno}$	$f_{\rm W} = \frac{10}{f_0} \frac{4\sqrt{\pi}}{3} \sqrt{\frac{\eta}{\alpha r_e}}$	$ au_{bs} =$	$=\frac{1}{f_0}\frac{4\sqrt{\pi}}{3}\sqrt{\frac{\eta}{\alpha r_0}}$	$\frac{1}{e} \exp\left(\frac{2}{3}\frac{\eta\alpha}{r_e\gamma^2}\right)$	$\times \frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_p}$
/	$\times \exp\left(\frac{2}{3}\frac{\eta\alpha}{r_e\gamma^2} \times \frac{\gamma\sigma_x\sigma_z}{2r_eN_p}\right)\frac{2}{\sigma_z\gamma}$	$\overline{\sigma^2}\left(\frac{\gamma\sigma_x\sigma_z}{2r_eN_p}\right)$	$\times \frac{\sqrt{2}}{\sqrt{\pi}\sigma_z\gamma^2} \left(\frac{1}{\sqrt{2}}\right)$	$\frac{\gamma \sigma_x \sigma_z}{\overline{2} r_e N_p} \bigg)^{3/2},$	
1 is r	necessary $\eta =$	$\delta_{max} = 1.5$	%		
	Table 2: Expected	and simulat	ted BS life	time.	
-	$\tau_{\rm BS}$ [min]	TLEP-H	TLEP-t	CepC	
-	analytical [9]*	310	3.6	113	
	analytical [8]	1400	3.3	619	
	weak-strong (loss)	26	0.3	5.5	
-	weak-strong (distr.)	33	0.3	~5	

- The lifetime in simulations is shorter than analytical estimates.
- Analytical formula considering dynamic beta agree with simulation results (M. Koratzinos).

To relax beamstrahlung

• For given current and beam-beam parameter,

$$L = \frac{\gamma}{2er_e} \frac{I\xi_y}{\beta_y}$$

zero crossing angle

$$\langle d\delta_{BS} \rangle = 34.1 r_e \gamma^3 \left(\frac{\xi_y \sigma_y}{\beta_y}\right)^2 \frac{1}{\sigma_z} \qquad \qquad N_\gamma = 13.3 \alpha r_e \gamma_e \frac{\xi_y \sigma_y}{\beta_y}$$

- Small σ_y is better. It means small N_e keeping ξ_y and coupling, that is, more bunch is better.
- Effect of beamstrahlung is prominent for CEPC, because number of bunch is 48, while 1000 for FCC

Parameters based on Head-on collision

		CEPC	TLEP-H ('14)	TLEP-H ('15)
circumference	C (km)	54.7	100	100
energy	E (GeV)	120	120	120
bunch population	N _e (10 ¹⁰)	37.9	4.6	4.6
emittance	ε _x /ε _y (nm)	6.79/0.02	0.94/0.0019	0.94/0.0019
beta at IP	β_x/β_y (m)	0.8/0.0012	0.5/0.001	0.5/0.001
bunch length	σ _z (mm)	2.14(2.65)	0.81(1.17)	1.6(1.8)
energy spread	$\sigma_{\delta}(\%)$	0.13 (0.16)	0.10(0.14)	0.139 (0.154)
damping time (turn)	τ_x / τ_z	78/39	142/71	142/71
number of IP	N _{IP}	2	4	4/2
number of bunch	N _{bunch}	48	1360	1360/1046
Luminosity	L/IP (10 ³⁴ cm ⁻² s ⁻¹)	2	6	5.3-7
Lumi (simulation)		2	7.6	5.9-7.6

Tune scan using weak-strong simulation Choice of Working Point (CEPC)

By Y. Zhang

0 0.10.20.30.40.50.60.70.80.9 1

The best operating point for flat beam collision is always $v_x=0.5+\varepsilon$, $v_v\sim0.6$, K. Ohmi, J. Plasma Fusion Res., 91,2015.

Luminosity versus bunch current for CEPC

• For flat beam, the achieved beam-beam parameter can be defined as $\xi_y \equiv \frac{2r_e\beta_yL}{\gamma N_ef_{col}}$

The effective beam-beam parameter is only about 0.045 with design parameters and the saturation is very clear near the design bunch current.

• The bunch length is nearly 3 times of , which entails strong hourglass effect.

Crab waist scheme Crab Waist: Choice of Parameters

Crab waist

	TLEP-Z('14)	TLEP-Z('15)	TLEP-H('14)	TLEP-H('15)
Ne (10 ¹⁰)	10	5	35	10
εx/εy (nm)	0.14/0.001	0.13/0.001	0.85/0.0018	0.94/0.001
βx/βy (m)	0.5/0.001	0.5/0.001	0.5/0.001	0.5/0.001
σz(mm)	2.7(5.9)	0.97(3.7)	2.76 (6.77)	2.1(2.6)
σδ(%)	0.05(0.12)	0.037 (0.124)	0.11(0.27)	0.139 (0.172)
τχ/τΖ	2640/1320	2640/1320	142/71	142/71
half cros. angle, θ_c	0.015	0.015	0.015	0.015
NIP	4	4	4	4(2)
Nbunch	29791	59581	127	1360
L/IP (10 ³⁴ cm ⁻² s ⁻¹)	212	215	9.24	5.3-7
L/IP (simulation)	200	143	9.8	5.9-7.6

TLEPs('14) are given by A.Bogomyagkov, E. Levichev, D. Shatilov, PRST TLEPs('15) are in a talk of F. Zimmermann, FCCweek'15.

Luminosity and beam-beam parameter for H $0.06 \\ 0.05 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.08 \\ 0.10 \\$

Equilibrium Beam sizes for H

Luminosity and beam-beam parameter

Equilibrium Beam sizes for z

• Ne's in table are the lowest points.

Vertical tail and lifetime from vertical aperture D. Shatilov

Crab waist without crossing angle

• Crab waist shows an excellent performance in consideration of only beam-beam.

Dynamic aperture issue in crab waist

- Crab sextupoles are located at both end of IR, which contains strong nonlinearity (kinematical and Q fringe at very high β).
- Management of the nonlinearity was given up in SuperKEKB (β_y *=0.3mm.)
- BINP team is designing IR without aperture loss in crab waist scheme for FCC, and is going well to getting solution.

Summary

- Beam-beam simulations have been performed with weakstrong and strong-strong considering beamstrahlung using BINP, KEK, IHEP codes for FCC/CEPC.
- The simulations can predict luminosity, beam-beam tune shift limit, bunch lengthening and lifetime. Required aperture and momentum acceptance are determined.
- Crab waist works very clear, especially in Z, in the beambeam simulation without complex IR nonlinearity.
- Management of IR nonlinearity is essential for crab waist.

Thank you for your attention

Parameters for baseline F. Zimmermann

	4−IP	Z		Н	2−IP		
E		45		120		45	120
Ne		1.80E+11	4.60	DE+10		2.37E+11	6.00E+10
ХЗ		2.90E-08	9.40	DE-10		2.90E-08	9.40E-10
εу		6.00E-11	2.00	DE-12		6.00E-11	2.00E-12
βx		0.5		0.5		0.5	0.5
βy		0.001		0.001		0.001	0.001
Vs		0.458		0.068		0.458	0.068
σz		0.00329	0.0	00162		0.00329	0.00162
σδ		5.20E-04	1.39	9E-03		5.20E-04	1.39E-03
εZ		1.71E-06	2.25	5E-06		1.71E-06	2.25E-06
βz		6.3269	1	.1655		6.3269	1.1655
θc		0		0		0	0
σz,BS		0.0038	C	0.0018		0.00384	0.00181
σδ,BS		6.10E-04	1.54	4E-03		6.10E-04	1.55E-03
Nb		16700		1360		12846	1046

Parameters for crab waist option

		CW 4-IP	Z	Н	2	-IP	
	Е		45	1	20	45	5 120
• Z & H	Ne	5.00)E+10	1.00E+	+11	6.60E+10) 1.30E+11
	ХЗ	1.30)E-10	9.40E-	-10	1.30E-10	9.40E-10
F. Zimmermann	εу	1.00)E-12	1.00E-	-12	1.00E-12	2 1.00E-12
	βx		0.5		0.5	0.5	5 0.5
	βγ		0.001	0.0	01	0.001	0.001
	VS		0.03	0.0)53	0.03	8 0.053
	σz	0.0	00097	0.002	208	0.00097	0.00208
	σδ	3.70)E-04	1.39E-	-03	3.70E-04	1.39E-03
	εz	3.59)E-07	2.89E-	-06	3.59E-07	2.89E-06
	βz	2	.6216	1.49	964	2.6216	6 1.4964
	θ c		0.015	0.0)15	0.015	0.015
		1.80)E+00	1.44E+	+00	1.80E+00) 1.44E+00
	σz,BS	0	.0037	0.002	258	0.0033	0.00261
	σδ,BS	1.24	IE-03	1.72E-	-03	1.27E-03	3 1.74E-03
	Nb	Ę	59581	6	625	45154	474

Simulation

- Weak-strong simulation
- Tune/IP=(0.54,0.61)
- Beamstrahlung is taken into account.
- sigz is self-consistent, but sigx or sigy are not.
- The difference between 2 and 4-IP are in damping time and synchrotron tune.

Luminosity and beam-beam parameter for t 0.14 0.1 0.09 0.12 0.08 L/bunch (10³⁴ cm⁻²s⁻¹ 0.1 0.07 0.06 0.08 0.05 $\mathfrak{m}_{\mathcal{F}}$ 0.04 0.06 0.03 τ/IP=184

0.04

0.02

0

1

1.5

2

2.5

Ne (10¹¹)

τ/IP=184

CW, 184

CW, 92

3

3.5

4

92

0.02

0.01

0

1

1.5

92

CW, 184

2.5

Ne (10¹¹)

2

CW, 92

3

3.5

4