FCC-ee Staging and Rf Configuration

U. Wienands; SLAC

with input from M. Benedikt, E. Jensen, J. Wenninger,

F. Zimmermann; CERN

A. Blondel, UGeneve

R. Rimmer, JLab

Top-Level FCCee Parameters

❖ Max. s.r. power 50 MW/beam

Parameter	Z	WW	Н	ttbar	LEP2
E/beam (GeV)	45	80	120	175	105
L (10 ³⁴ cm ⁻² s ⁻¹)/IP	28.0	12.0	5.9	1.8	0.012
Bunches/beam	16700	4490	1330	98	4
I (mA)	1450	152	30	6.6	3
Bunch popul. [10 ¹¹]	1.8	0.7	0.47	1.4	4.2
Cell length [m]	300	100	50	50	79
Tune shift / IP	0.03	0.06	0.09	0.09	0.07
ΔE/turn [GeV]	0.035	0.331	1.67	7.60	

Overall Staging Scheme

- Get to as much physics as possible, as early as possible
- There is a meaningful physics program at less than the utmost performance or energy (of FCCee)
 - "Giga-Z": a few 100/fb integrated luminosity
 - "Mega-W": 100/fb integrated lumi
 - "Higgs Factory"
 - All can be comfortably exceeded at Stage 1 of FCC-ee.
- Staging considerations
 - Reach the Higgs in Stage 1
 - Convincing cost profile

Staging FCC-ee

SLAC

Lattice staging?

- Missing-dipole lattice (install every 2nd dipole only)
 - initial cost savings ≈ \$50M (?)
 - difficult (expensive) build-out
- 1-ring initially, upgrade to 2-rings
 - luminosity limit of 1 ring.
 - build-out to 2 rings not trivial

Rf staging

- easy build-out without changing prior install
- Costs of FCC-ee rf system up to 109 USD (Rimmer, TLEP5)
 - how much can we shave off initially?
- early commissioning with minimal rf costs
- can include scenarios like shared use between the 2 beams.

Rf System Considerations & Trade-Offs

- The FCC-ee rf system is heavily beam-loaded (50 MW)
 - match between cavity/coupler and rf generator is important to get optimum energy transfer to the cavity (beam).
 - implemented in h/w by details of coupler.
 - here assumed fixed, but could be variable (technology challenge)
 - the requirements vary considerably
 - from Z running (nominal 1.5 A, 34 MV/turn) to
 - t-tbar running (nominal 6 mA, 7.5 GV/turn)
- ❖400 vs 800 MHz
 - 400 MHz: lower Q_s; longer bunches; less wakefield issues
 - 800 MHz: higher gradient; shorter bunches
- single-cell vs multi-cell cavity
 - single cell better HOM spectrum;
 - multicell: higher voltage/structure

Frequencies and Cavities

- ❖400 MHz preferred for FCC-hh => adopt that for now.
 - right choice for Z running
 - but: expensive to generate voltage at the high-energy end
- 400/800 MHz hybrid system.
 - 400 MHz cavity optimized for high beam current
 - single- or double-cell structure, stringent limits on HOM spectrum
 - ≈ 10...12 MV/module
 - 800 MHz optimized for high voltage
 - more cells; higher voltage
 - less stringent limits on HOM spectrum
 - ≤ 37.5 MV/module
 - In this talk we will not consider the 800 MHz system.
 - but is not off the table
- Share 400-MHz rf cavities between rings at least at t-tbar.

SRF Cavity Performance near 400 MHz

SLAC

Observed performance (high-current accelerator cavities):

Cornell CESR: 6...10 MV/m

KEKB: 6 MV/m op; 10 MV/c spec.

JLab CLS: 6...10 MV/m; 6 MV/m tested

- All are single-cell cavities, highly damped HOM spectrum
 - needed for Z, W running
- ❖A 2-cell cavity can have a similarly clean HOM spectrum.
 - π mode has 180° phase between gaps => cancellation
- more cells => satellites unavoidable
 - since these can have high Q at relatively low frequencies, they can cause trouble.

A 400 MHz Cavity (R.A. Rimmer, JLab CLS Cavity)

SLAC

single-cell prototype cavity for a 3-cell design

Staging

- ❖ Define an "rf station," i.e. klystron with cavities driven
 - 1 MW klystron driving 8 cavity-modules up to 12 MV (400 MHz)
 - two 2-cell cavities; CLS style, 2.5...3 MV/gap => ≤ 12 MV/module
 - 125kW power per module: ok with current coupler technology
- Keep other parameters at values from FCC-ACC-SPC-0003 EDMS 1346081 Rev. 2.0
 - specifically beam emittance, bunch charge, IP optics, ξ .
 - hourglass and crossing angle taken into account.
- Some parameters vary with rf voltage & power
 - bunch length, # of bunches

Conceptual Layout of Rf Cell

SLAC

- ❖ Based on 50-m arc cell by Härer et al.
- 62 such cells needed for 11 GV installed rf
 - 31 half cells/straight; 775 m (4 rf straights)

To Share or not to Share?

- Can we share cavity modules between the rings?
 - Yes, but cannot have both bunches in cavity at the same time
 - Limits the bunch pattern!
 - Power doubles: 250 kW/module: ok.
- ❖ If rf x km away from detectors, max. train length is < 2x.</p>
 - Z: 16700 bunches min. separation 0.76 m
 12.7 km long;

W: 3.4 km;

H: 1 km;

t-tbar: 75 m.

- The rf system may force us to run Z more evenly distributed
 - not good for sharing @ Z

Stages

- 48 Klystrons, 8 cryo modules ea., 2.2 GV voltage/ring
 - Z: 1.0x10³⁵/cm²/s; W: 3.6x10³⁴/cm²/s; H: 1.1x10³⁴/cm²/s

◆ Stage 2:

- 100 Klystrons, 8 cryo modules ea., 4.5 GV voltage/ring
 - Z: 2.6x10³⁵/cm²/s; W: 9.7x10³⁴/cm²/s; H: 3.7x10³⁴/cm²/s

◆ Stage 3:

- reconfiguration to share cavities => double the voltage (9.6 GV)
 - Z: n/a: bunch pattern
 - W: 1.1x10³⁵/cm²/s; H: 4.7x10³⁴/cm²/s; tt: 1.2x10³⁴/cm²/s

Commissioning stage (if applicable)

- 24 Klystrons, 8 cryomodules ea., 1.1 GV voltage/ring
 - Z: 4.7x10³⁴/cm²/s; W: 1.6x10³⁴/cm²/s; H: n/a: voltage limit

400 MHz Cavities only, shared last Stage

Energy Sawtooth

SLAC

- ❖-0.08% @ 45 GeV, -0.41% @ 80 GeV,
 - -1.39% @ 120 GeV, -4.34% @ 175 GeV
- compared to an aimed-for acceptance of 2%.
- Need to fix this:
 - 2, 2, 4, 8 rf regions
 - modulating the bending strength (& possibly focusing)

FCC-ee preliminary layout

(Schematic plot; exact locations & voltages of rf stations tbd)

The sawtooth causes some uncertainty of beam energy at the experiments Order of magnitude guess: 0.5 MeV @ 120 GeV; 5 MeV @175 GeV

Summary of Installed Rf (full build-out)

		Per ring			
Rf Region	Frequency	Tubes	Modules	Modules	Voltage
	(MHz)	1 MW ea	per tube	2 couplers ea	(MV)
1	400	13	8	104	1248
2	400	13	8	104	1248
3a	400	6	8	48	576
3b	400	6	8	48	576
4a	400	6	8	48	576
4b	400	6	8	48	576
Total		50		400	4800
Total for shared rf		100		800	9600

Summary

SLAC

- 2-cell 400 MHz cavity (2 per cryo module) seems appropriate
 - HOM spectrum of such an assy can be acceptable
 - 2.5 m length of cm => ≈ 5 MeV/m "real estate" gradient.
- Initial rf of about 1/2 of full complement appears to be a credible scenario.
 - Useable Z, W and Higgs luminosities
 - Possibility of early commissioning with 1/2 of this initial set
 - Z, W reach
- Energy sawtooth partially corrected
 - at 175 GeV will need modulated arc bending.
 - or additional 800 MHz rf in mid-arc (also shorter bunches)
- Full power running for Z, W, H
- Highest voltage for t-tbar running reached by sharing cavities.
 - assume Z lumi-run completed at that time.