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Presentation Goals

• Main focus is on providing key design features and performance parameters 
of block coils for comparisons with other approaches, and overall machine 
optimization 

• An implicit question is how to best analyze and present the information:

• Choice of appropriate criteria and targets to improve consistency and 
facilitate comparisons

• Provide information covering a range of design parameters and 
features of potential interest to FCC

• Incorporate experience from model magnet fabrication and test

• Not covered in this presentation: 

• Analysis details; engineering aspects; feedback from fabrication and 
test of model magnets; R&D priorities

• A list of references on these topics is provided at the end
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Outline

• Reference design (single aperture)

• Objectives, features and parameters 

• Quench protection analysis (CLIQ) 

• Reference conductor properties and short sample performance

• Opportunities for improved conductor, and related performance gains

• Design optimization for FCC 

• Increased aperture

• Increased margin: graded coils, larger coils

• Double aperture designs

• Reference case, compact option

• Field quality considerations

• Summary
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Reference Design (Single Aperture)

Design parameters Unit Ref (1ap)

Strand diameter mm 0.8

Number of strands 51

Cable width mm 22.0

Insulation thickness mm 0.1

Coil aperture (x/y) mm 45/47

No. turns (1 quadrant) 54

Minimum bending radius mm 12.8

Coil area (1 quadrant) cm2 13.8

Clear bore diameter mm ~40

Yoke diameter mm 623

Performance at 16 T Unit Ref (1ap)

Operating current kA 18.6

Je (insulated cable) A/mm2 517

Peak field in the coil T 16.9

Horizontal force (I+/I-) MN/m 6.3/-6.3

Vertical force (I+/I-) MN/m -2.9

Inductance mH/m 5.1

Stored energy MJ/m 0.85

Guiding criteria and strategy:

• Base reference on solid experience from 

model magnet fabrication, test & analysis

• This design (HD2) achieved 13.8T at 4.5K, 

highest field on record for a dipole with 

accelerator relevant bore and field quality

• From this starting point, we study variants 

in areas of interest to FCC 
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Quench Protection with CLIQ

• CLIQ = Coupling Loss Induced Quench system under 
development by CERN.

• Capacitive discharge to induce fast oscillations of the 
transport current  (ref: E. Ravaioli et al., IEEE Trans. 
Appl. Supercond. 24 (3) June 2014)

• Recently tested on several magnets, including NbTi 
and Nb3Sn models, with very good performance 

Three configurations considered for the case of a block-coil made of two double-layers: 

Pole-Pole Crossed LayersLayer-Layer

Note: Layer-Layer and Crossed Layers require an additional (lower current) lead
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Quench Model Parameters and Results

• Based on single aperture reference cross section, 14 m long coil (expect similar results 
for double aperture, using two CLIQ units)

• CLIQ parameters: 1kV, 100 mF; simulations include 10 ms delay (quench validation time)

• Conductor parameters (HD2): 0.8 mm strand diameter, 14 mm twist pitch, 51 strands, 
127 mm transposition length, Jc(16T, 4.2K)=1.49 kA/mm2, RRR=287, f(non-Cu)=0.55

350 K

16 T

350 K

16 T

• Maximum temperature within acceptable level (350K) for layer-layer and crossed layers  

• Pole-pole configuration can achieve temperature below 350 K by increasing voltage
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Short Sample Performance Reference

Reference Iss B1
ss

Temperature 4.5K 1.9K 4.5K 1.9K

Single aperture 18.0 20.1 15.52 17.15

Double aperture 17.8 19.7 15.49 17.12

Strand Parameter Unit HD2 Coil 2&3

Non-Cu Fraction % 55

Jc (12T, 4.2K) (*) A/mm2 3419

Jc (15T, 4.2K) (*) A/mm2 1880

Ic (15T, 4.2K) (*) A 520

• Critical current measured on wires used in the HD2 models is used as initial reference

• Jc =1 .5 kA/mm2 at 16 T, 4.2K: same as FCC target. RRR=287, Dfil=74 mm

• A range of conductor designs and properties will be discussed in the following slides

(*) From extracted strands; self-field corrected

• Almost identical result for single aperture and double aperture designs, as expected

• Operation at 4.5K, 16 T is excluded with reference conductor properties

• Operating point for 1.9K, 16 T is at 92% on the load line: need to increase margin
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Performance vs. Copper fraction

• Results indicate that optimized CLIQ configurations may allow to protect the magnet 
using significantly lower copper fraction with respect to traditional quench heaters [2]

• Going from f(non-Cu) = 0.4 to 0.6 corresponds to an effective 50% improvement in Jc

• CLIQ simulations have been experimentally validated in a broad range of parameters, 
but specific tests on block-coil dipoles should be performed to confirm results

Maximum temperature vs. non-copper fraction Short sample current vs. non-copper fraction

Reference design 

(single aperture)
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Performance with improved Nb3Sn Jc

• A ~10% fraction of these gains would be sufficient to bring the operating point of the 
reference design below 85% at 1.9K

• Principle: increase of Nb3Sn pinning force at high field through grain refinement

• Exciting recent demonstration in wires (X. Xu et al, Appl. Phys. Lett. 104 082602)

• Discussed in Wednesday’s presentation by D. Larbalestier  (x6 potential)

• Corresponding gain in Jc if extrapolated to 13 nm grain size: x4.5 @ 16T [ref. 1]

• Sufficient to bring the operating point of the reference design below 85% at 4.5 K
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Block-Coils with Larger Aperture

Performance at 16 T Unit Ref. Lrg Ap

Operating current kA 18.6 26.4

Peak field in the coil T 16.9 17.2

Av. stress (Fx/coil height) MPa 143 141

Inductance mH/m 5.5 4.1

Stored energy MJ/m 0.85 1.42

Short sample and margin Unit Ref. Lrg Ap

Maximum current kA 20.1 29.0

Maximum dipole field T 17.1 17.4

Operating point for 16 T % 92.5 90.8

Design parameters Unit Ref Lrg Ap

Strand diameter mm 0.8 1

Number of strands 51 51

Number of turns mm 54 46

Coil aperture (x/y) mm 45/47 60/58

Minimum bending radius mm 12.8 18.3

Strand area (1 quadrant) cm2 13.8 18.4

Clear bore diameter mm ~40 ~55

• Increasing the aperture up to ~55 mm 
brings several attractive features, but 
coil area increase is significant

(*) At 1.9K, assuming reference conductor properties
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Increased Margin with Graded Coil

Benefits:  higher field than HD2 with same strand area (13.8 cm2/quadrant)

Challenges:

• High Field cable: thickness +0.35 mm, winding radius -1 mm

• Low Field cable: (further) increased aspect ratio  (beyond limits?)

• Fabrication and splicing of the two sub-coils (a long list…)

Cable Parameters HF LF

Strand diameter [mm] 1.0 0.65

No. Strands 41 64

No. turns (L1+L2) 6+2 28+25

Strand area [cm2] 2.57 11.25

B1 (SSL) [ T ] 4.5K 1.9K

Reference (HD2) 15.52 17.15

Graded (*) 16.67 18.42

Dipole field increase                  +1.15 +1.27

11.8 mm

(*) Ic scaled with strand area from HD2 
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Increased Margin with Wider Coil

• Goal: lower operating point to ~85%

• Ref. cable, more turns, still 2 layers/pole

• +1.5T field, +8% margin

• +60% strand, x2.8 inductance

Design parameters Unit Ref. Wide

Coil aperture (x/y) mm 45/47 45/47

No. turns (1 quadrant) 54 86

Minimum bending radius mm 12.8 12.8

Strand area (1 quadrant) cm2 13.8 22.0

Performance at 16 T Unit Ref. Wide

Operating current kA 18.6 13.5

Peak field in the coil T 16.9 16.4

Horizontal force (I+/I-) MN/m 6.3 7.2

Vertical force (I+/I-) MN/m -2.9 -3.5

Inductance mH/m 5.5 15.2

Stored energy MJ/m 0.85 1.4

Short sample & margin (*) Unit Ref. Wide

Maximum current kA 20.1 16.0

Maximum dipole field T 17.1 18.6

Operating point for 16 T % 92.5 84.4

Reference

design

Wide

coil

(*) At 1.9K, assuming reference conductor properties
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Two-in-One Design Reference

Design parameters Unit 1 Ap 2 Ap

Strand diameter mm 0.8 0.8

Number of strands 51 51

Cable width mm 22.0 22.0

Insulation thickness mm 0.1 0.1

Coil aperture (x/y) mm 45/47 45/47

No. turns (1 quadrant) 54 54

Minimum bending radius mm 12.8 12.8

Strand area (1 quadrant) cm2 13.8 13.8

Clear bore diameter mm ~40 ~40

Yoke diameter mm 623 700

Performance at 16 T Unit 1 Ap 2 Ap

Operating current kA 18.6 18.5

Je (insulated cable) A/mm2 517 514

Peak field in the coil T 16.9 16.7

Horizontal force MN/m 6.3 6.4

Vertical force MN/m -2.9 -2.9

Inductance mH/m 5.1 11.2

Stored energy MJ/m 0.85 1.9

• Guideline: direct extension of single 

aperture case

• 250 mm separation, 700 mm yoke

• Magnetic parameters and field quality 

are the same as for single aperture

• Outward forces are the same as for a 

single aperture
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Two-in-One with Larger Aperture

• Guideline: direct extension of single 

bore case with increased aperture

• 250 mm separation, 700 mm yoke

• Some coupling between apertures, 

may require further optimization or 

larger yoke 

Performance at 16 T Unit 1 Ap (L) 2 Ap (L)

Operating current kA 26.4 25.8

Peak field in the coil T 16.9 16.9

Inductance mH/m 4.1 8.4

Stored energy MJ/m 1.42 2.8

Short sample and margin Unit 1 Ap (L) 2 Ap (L)

Maximum current kA 29.0 28.5

Maximum dipole field T 17.4 17.5

Operating point for 16 T % 90.8 90.4

Design parameters Unit 1 Ap (L) 2 Ap (L)

Strand diameter mm 1

Number of strands 51

Number of turns mm 46

Coil aperture (x/y) mm 60/58

Minimum bending radius mm 18.3

Strand area (1 quadrant) cm2 18.4

Clear bore diameter mm ~55

Yoke diameter mm 623 700
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A Compact Twin Aperture Design

Guiding criteria and objectives:

• High efficiency, minimum overall size

• Asymmetric coil design (as proposed 

for HiLumi D2) to reach 150 mm 

beam separation and 60 mm yoke

Design parameters Unit 1 Ap 2 Ap

Strand diameter mm 0.8 0.8

Number of strands 51 51

Cable width mm 22.0 22.0

Insulation thickness mm 0.1 0.1

Coil aperture (x/y) mm 45/47 45/47

No. turns (1 quadrant) 54 54

Minimum bending radius mm 12.8 12.8

Strand area (1 quadrant) cm2 13.8 13.8

Clear bore diameter mm ~40 ~40

Yoke diameter mm 623 600

Performance at 16 T Unit 1 Ap 2 Ap

Operating current kA 18.6 18.4

Je (insulated cable) A/mm2 517 508

Peak field in the coil T 16.9 16.8

Horizontal force (I+/I-) MN/m 6.3/-6.3 6.3/-7.3

Vertical force (I+/I-) MN/m -2.9 -2.9/-3.5

Inductance mH/m 5.1 11.5

Stored energy MJ/m 0.85 1.9
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Field Quality

Accelerator quality is essential for design evaluation and comparison

• Requires realistic designs

• Need to define preliminary FCC targets for design and fabrication errors 
(tolerances in coil fabrication will likely be the dominant source)

• Persistent current correction with magnetic shims should be foreseen 
(smaller filaments, use of NbTi in low field region will also help)

Twin ap. 

(R=13 mm)

Injection (1T) Collision (16T)

Ref. Comp. Ref. Comp.

b2 -0.3 9.5 -4.0 -20

b3 2.3 -9.3 -2.0 -1.2

b4 0.0 2.2 -0.1 2.2

b5 -1.3 0.4 -0.6 0.4

b6 0.0 0.1 0.0 0.1

b7 -0.9 -0.5 -1.0 -0.6

b8 0.0 0.0 0.0 0.0

b9 -0.9 -0.8 -1.0 -0.9

Large ap. 

(R=15 mm)

Collision 

(16T)

b2 0

b3 0.5

b4 0 

b5 -0.5

b6 0 

b7 0.6

b8 0

b9 -0.3

Geometric and Saturation Harmonics for twin-aperture and large single-aperture designs
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Summary

• A reference block-coil dipole was defined, using parameters and features based on 
model magnet fabrication and test results

• Performance parameters at 16 T meet basic requirements/constraints for field 
quality, mechanical support, coil stress and quench protection

• Reference current density from model magnets, equivalent to FCC target, results 
in an operating point at 92.5% of the short sample limit (16 T, 1.9K)

• Achieving an 85% operating point at 1.9K, 16 T requires a moderate increase in 
critical current density and/or a graded coil design

• Operation at 4.5K, 16 T would require a substantial improvement in critical 
current density. This level of improvement is possible, and very promising results 
were obtained in recent months. 

• Protection with CLIQ  meets requirements with copper fraction of 40%

• Block coil designs for aperture in the 50-55 mm range are possible while maintaining 2 
layers/pole, and may be easier to implement in several respects, but increase in 
conductor, structural material materials are significant

• No issues for reference two-in-one design for 250 mm separation and 700 mm yoke. 
Increased aperture requires some further optimization. A compact design with 150 
mm separation and 600 mm yoke is possible using an asymmetric coil layout. 
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