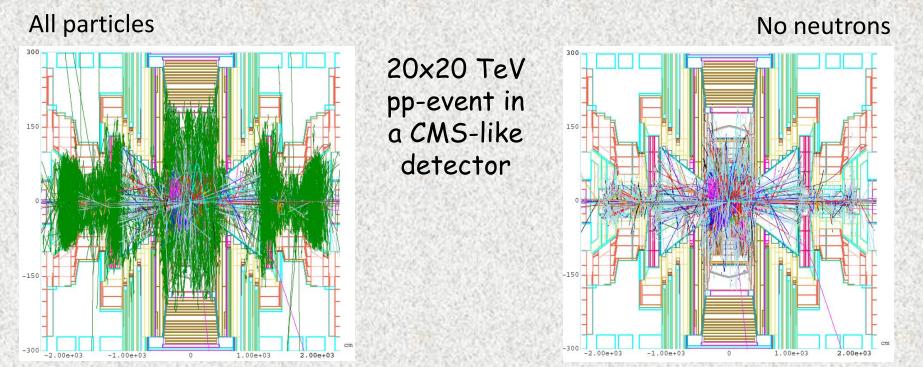


**AD / Accelerator Physics Center** 

# Beam Losses, Collision Debris and Machine Detector Interface at FCC-hh Nikolai Mokhov

Fermilab


First Annual Meeting of the Future Circular Collider Study Washington, DC March 23-27, 2015

# Outline

- IP and Machine-Induced Backgrounds and Radiation Loads
- Protecting Detector and Collider Components
- 50x50 TeV pp Collision Characteristics
- Loads on Machine and Detector: FCC-hh vs HL-LHC
- Summary

# **IP Backgrounds and Radiation Loads in IR**

Collision debris from IP are the major source (>99%) of background and radiation load in collider detectors and IR components at nominal parameters with a well-tuned machine (Tevatron and LHC experience). Challenging at HL-LHC and FCC-hh



FCC Week, Washington, DC, March 23-27, 2015

### Peak Radiation Loads In Detector MARS-calculated in 2002

| Machine  | E (TeV) | I, 10 <sup>14</sup> | Q (GJ) | $\sqrt{S}$ | $L, 10^{34}$ | $\sigma_p(mb)$ | 10 <sup>16</sup> (int/10yr) |
|----------|---------|---------------------|--------|------------|--------------|----------------|-----------------------------|
| Tevatron | 0.98    | 0.1                 | 0.0016 | 1.96       | 0.01         | 60             |                             |
| LHC      | 7       | 3.1                 | 0.35   | 14         | 1            | 80             | 4                           |
| LHC-2    | 7       | 4.8                 | 0.54   | 14         | 4.7          | 80             | 19                          |
| SLHC     | 7       | 9.6                 | 1.08   | 14         | 10           | 80             | 40                          |
| VLHC-1   | 20      | 9.7                 | 3.20   | 40         | 1            | 90             | 4.5                         |
| VLHC-2   | 100     | 2.0                 | 3.20   | 200        | 2            | 105            | 10.5                        |

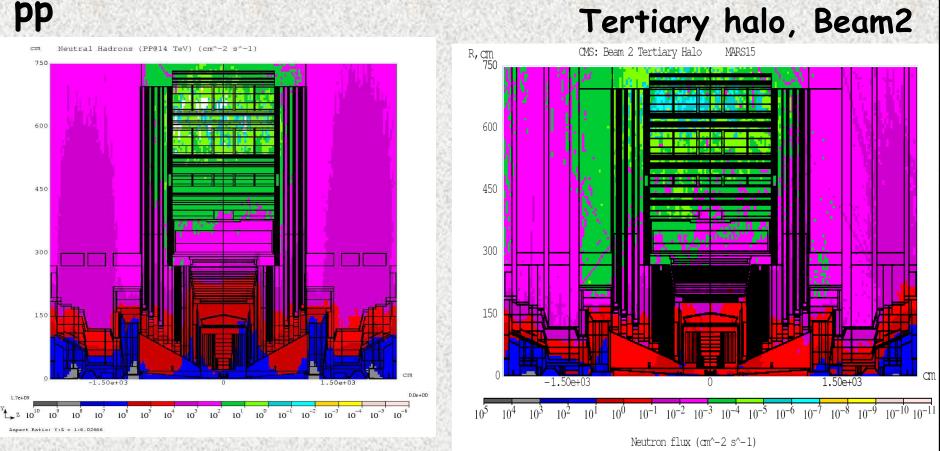
Peak 10-year fluence  $(cm^{-2})$  and dose (Gy) in inner tracker and HE calorimeter at 14, 40 and 200 TeV (preliminary)

| Я.    | and HF calorimeter at 14, 40 and 200 TeV (preliminary) |                  |                      |                          |                      |
|-------|--------------------------------------------------------|------------------|----------------------|--------------------------|----------------------|
|       | Detector                                               | Value            | SLHC                 | VLHC-1                   | VLHC-2               |
|       | SVX                                                    | $F_n$            | 2×10 <sup>15</sup>   | 2×10 <sup>14</sup>       | 8×10 <sup>14</sup>   |
|       |                                                        | F <sub>chh</sub> | 8×10 <sup>16</sup>   | $8 \times 10^{15}$       | $1 \times 10^{16}$   |
| 200   |                                                        | D                | $1.5 \times 10^{7}$  | $1.5 \times 10^{6}$      | 3×10 <sup>6</sup>    |
| 1111  | Tracker                                                | $F_n$            | 1.5×10 <sup>15</sup> | 2×10 <sup>14</sup>       | 6×10 <sup>14</sup>   |
|       |                                                        | Fchh             | $1.5 \times 10^{15}$ | $2.5 \times 10^{14}$     | 6×10 <sup>14</sup>   |
|       |                                                        | D                | 8×10 <sup>5</sup>    | $8 \times 10^{4}$        | 2×10 <sup>5</sup>    |
| ŝ     | Fin                                                    | $F_n$            | 1.8×10 <sup>16</sup> | 2×10 <sup>15</sup>       | 4×10 <sup>15</sup>   |
| 20    |                                                        | $F_{chh}$        | $8 \times 10^{14}$   | $1 \! \times \! 10^{14}$ | $2.5 \times 10^{14}$ |
| 22    |                                                        | D                | 2×10 <sup>6</sup>    | 3×10 <sup>5</sup>        | 5×10 <sup>5</sup>    |
| 11111 | HF                                                     | $F_n$            | 1.5×10 <sup>17</sup> | $2.1 \times 10^{16}$     | 4.8×10 <sup>16</sup> |
| 1226  |                                                        | Fchh             | 7×10 <sup>15</sup>   | $1.2 \times 10^{15}$     | $2.5 \times 10^{15}$ |
|       |                                                        | D                | $2.5 \times 10^{7}$  | 3.5×10 <sup>6</sup>      | $1 \times 10^{7}$    |

Peak values in collider detectors scale with luminosity, with only weak dependence on JS

<u>Additionally, scale with</u> <u>energy</u> in very forward region (machine)

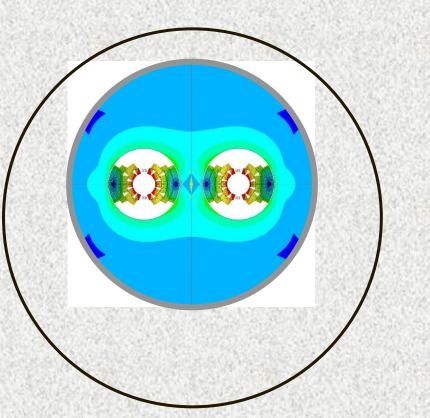
FCC Week, Washington, DC, March 23-27, 2015


### Machine-Induced Backgrounds and Radiation Loads

Machine-induced backgrounds (MIB) can be a serious issue at a low luminosity. The collimation system takes care of "slow" losses with a very high efficiency. Still the following processes contribute to backgrounds and radiation loads to IR and detector components:

- 1. Beam-gas: products of beam-gas interactions in straight sections and arcs upstream of the experiments and after the cleaning insertions
- 2. Tertiary beam halo escaping the collimation systems ("collimation tails")
- 3. Cross-talk between experiments at different IPs
- 4. "Kicker prefire": any remnants of a mis-steered beam uncaptured in the beam dump system
- 5. FCC-hh: synchrotron photons

# MIB vs IP: Neutron Flux in CMS


#### LHC, 7x7 TeV, 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>



Aspect Ratio: Y:Z = 1:10.

#### Barrel Si tracker at r=4 cm: Φ<sub>n</sub>(pp) ≈ 10<sup>5</sup> Φ<sub>n</sub>(MIB<sub>total</sub>), but can differ by only a factor of 10 or so at startup conditions FCC Week, Washington, DC, March 23-27, 2015 FCC-hh: Beam Loss, IP Debris & MDI - N.V. Mokhov 6

# SyncRad Modeling in FCC-hh Arcs



cm -20 -100 10 20 30 1.50x10<sup>3</sup>  $3.00 \times 10^3$ 4.50x10<sup>3</sup>  $v_{y} = 1:8.206e+01$ 

Tracks for 250 50-TeV protons in each aperture

16-T dual-aperture  $Nb_3Sn$ dipole with Ti-collar, in 1-m diameter cryostat envelope (A. Zlobin)

FCC Week, Washington, DC, March 23-27, 2015

MARS15-modelled synchrotron photon emission: ~30 W/m/aperture deposited by keV electrons in dipole beam-pipe (slits in dipoles and photon absorbers in interconnect regions, see my talk at the magnet session)

# **Detector and Collider Protecting Components**

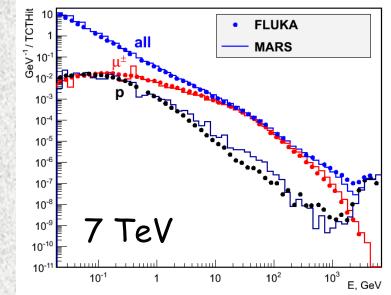
#### **IP Collision Debris:**

- > 0.95 kW LHC, 4.76 kW HL-LHC and 43.2 kW FCC on each side of IP
- Beampipe and innermost detector component design
- > Detector forward region shielding and sealing tunnel/hall interface
- Inner triplet (IT): front absorber (TAS, L~20m), large-aperture quads with tungsten inner absorbers, absorbers in interconnect regions
- Neutral beam dump (TAN, L~147m) and Single-Diffraction collimators in dispersion suppression regions (TCL, L~149 and 190m)
- Beam Loss:
  L is a distance from IP1/IP5 at LHC and HL-LHC
  - Energy stored in each beam: ~0.3 GJ LHC and >8 GJ FCC-hh
  - Betatron and momentum multi-stage collimation systems (L=1/4 C)
  - Beam abort system (L=1/8 and 3/8 Circumference)
  - Tungsten tertiary collimators (TCT, L~150m) and TAS (L~20m)
  - > Detector forward region shielding and sealing tunnel/hall interface
  - FCC-hh: intercepting synchrotron photons at elevated temperatureFCC Week, Washington, DC, March 23-27, 2015FCC-hh: Beam Loss, IP Debris & MDI N.V. Mokhov

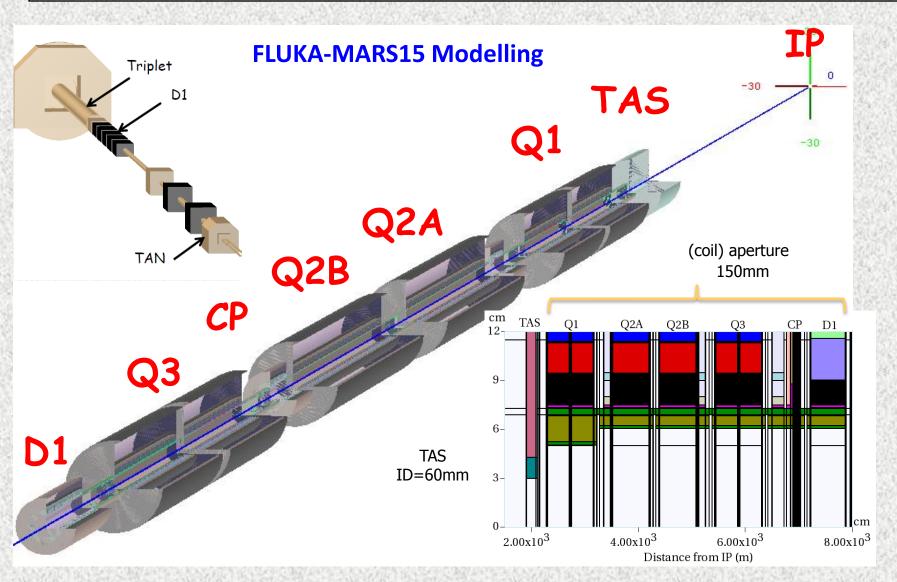
# **MDI** Principal Design Constraints: Detector

- Detector component radiation aging and damage: CMS and ATLAS trackers and endcap calorimeters can currently survive up to ~500 fb<sup>-1</sup>; will be able to handle ~ 3000 fb<sup>-1</sup> after Phase II upgrade
- Reconstruction of background objects (e.g., tracks) not related to products of pp-collisions; the wish occupancy <1%, although D0 worked with many layers with occupancies above 10%
- Deterioration of detector resolution, e.g., jets energy resolution due to extra energy from background hits
- Good progress in detector technologies on all fronts, e.g., picosecond scale time resolution; monitoring beam loss in ATLAS and CMS


# MDI Principal Design Constraints: IR Magnets

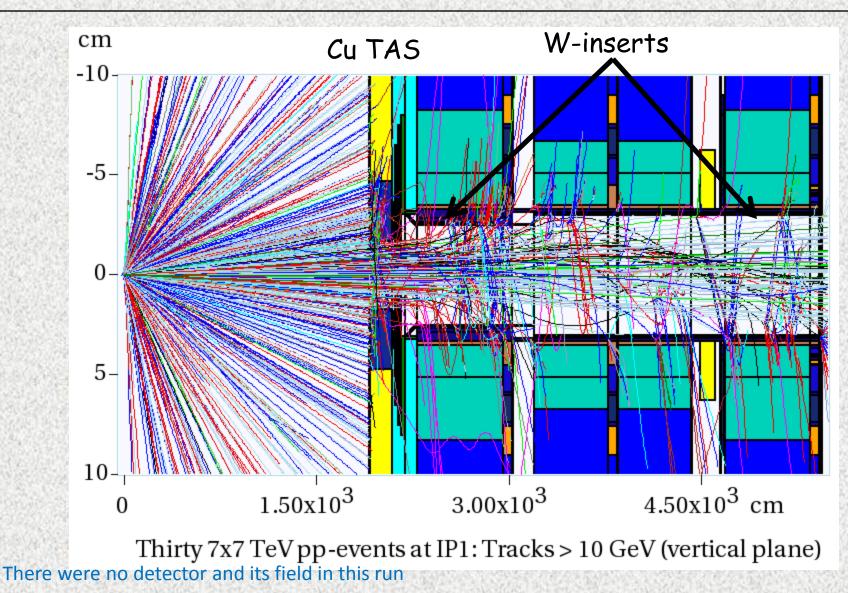

- Quench stability: peak power density in the innermost cable; keep < 40 mW/cm<sup>3</sup> and < 13 mW/cm<sup>3</sup> in Nb<sub>3</sub>Sn and NbTi, respectively; <u>primary criterion at</u> <u>LHC</u>
- Dynamic heat loads: cryo plant capacity and operational cost; keep below 10-15 W/m in cold mass; <u>FCC-hh additionally: 30 W/m/aperture in dipole beam</u> <u>screen</u>

Radiation damage: peak dose on the innermost coil layer over system lifetime (3000 fb<sup>-1</sup> at HL-LHC and FCC-hh): keep below 25-35 MGy in insulation and a fraction of DPA in coil inorganic materials; <u>primary</u> <u>criterion at HL-LHC and FCC-hh</u>

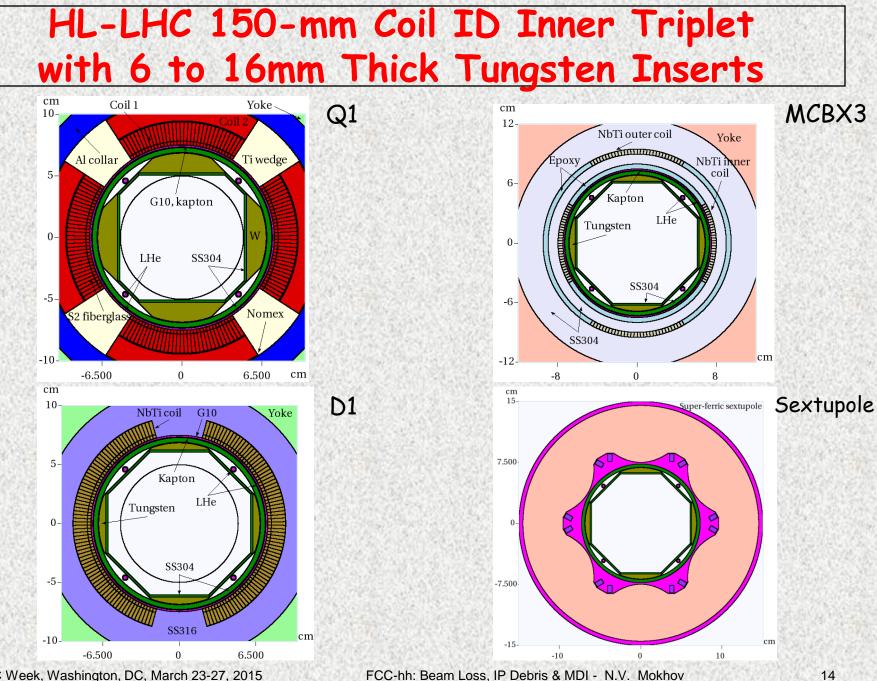

# Backgrounds: FLUKA-MARS15 Comparison

#### Backgrounds at CMS from 3.5 and 7-TeV beam-halo





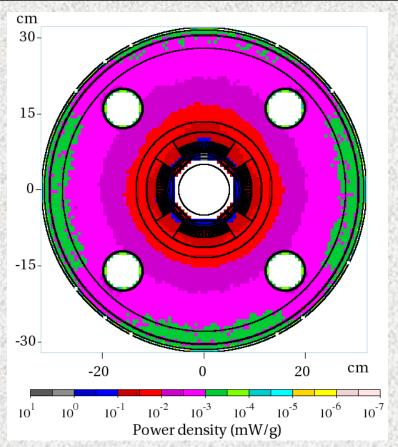

# HL-LHC 150-mm IT-CP-D1




FCC Week, Washington, DC, March 23-27, 2015

# Particle Tracks in HL-LHC IT




FCC Week, Washington, DC, March 23-27, 2015



FCC Week, Washington, DC, March 23-27, 2015

14

#### Loads in IT Superconducting Coils: HL-LHC vs LHC

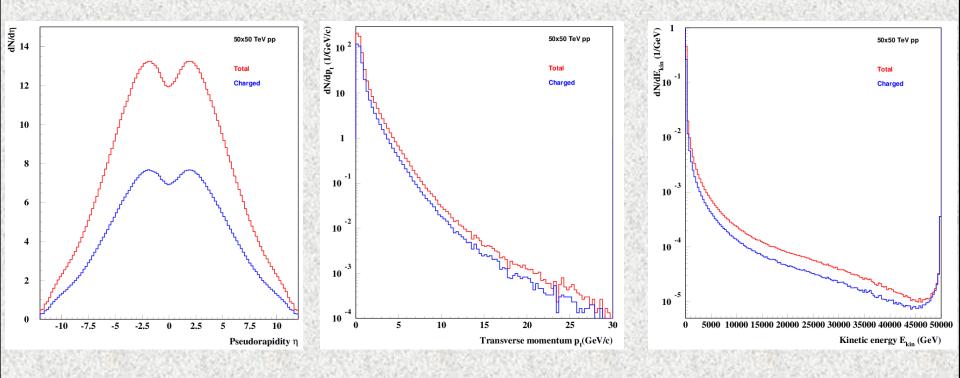


<u>CERN (FLUKA) - FNAL (MARS)</u> <u>coherent simulation/design for</u> <u>HL-LHC:</u>

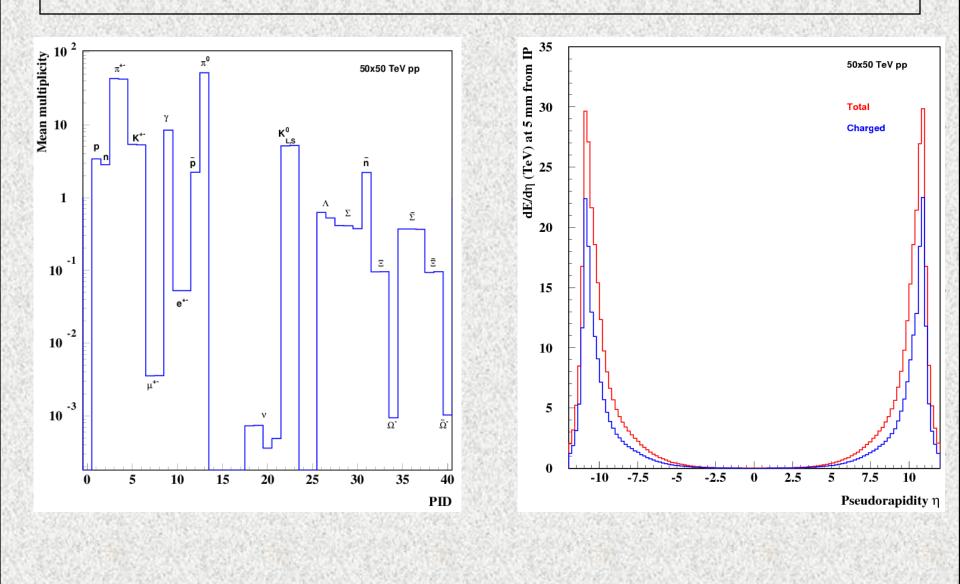
- Peak power density safely below the quench limit
- Average dynamic heat load on cold mass ~14 W/m
- The peak dose on insulation over 3000 fb<sup>-1</sup> is at the common limits; more R&D is needed
- <u>FCC-hh:</u> further R&D on coil insulation and inner absorbers is needed

With the protection system implemented in the HL-LHC IT 150-mm coil ID magnets, the peak dose in the coils at integrated luminosity of 3000 fb<sup>-1</sup> is about same as in the LHC 70-mm aperture quads (with modest SS inserts) at integrated luminosity of 300 fb<sup>-1</sup>

FCC Week, Washington, DC, March 23-27, 2015


### Comparing HL-LHC and FCC-hh at 5x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>

- 1. Modeling 14 and 100 TeV pp events at IP (z=0)
- 2. Scoring particle and energy fluxes on a R=5mm sphere
- 3. Modeling particle and energy loads on detector, TAS and collider


#### 4. Simulations here are done with DPMJET-III and MARS15

|                              | HL-LHC               | FCC-hh              |
|------------------------------|----------------------|---------------------|
| JS (TeV)                     | 14 TeV               | 100 TeV             |
| σ <sub>in</sub> (mb)         | 85                   | 108                 |
| Int. rate (s <sup>-1</sup> ) | 4.25×10 <sup>9</sup> | 5.4×10 <sup>9</sup> |
| TAS ID (mm)                  | 60                   | 22                  |
| TAS Length (m)               | 2                    | 3                   |
| TAS L <sub>non-IP</sub> (m)  | 22 (L*=23m)          | 35 (L*=36m)         |

### 50x50 TeV pp at IP: $dN/d\eta$ , $dN/dp_{t}$ and $dN/dE_{kin}$

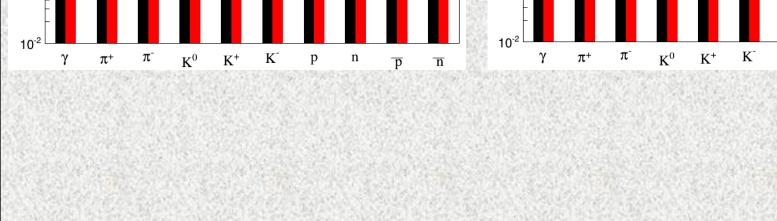


#### 50x50 TeV: Multiplicity at IP and dE/d $\eta$ at 5 mm



## HL-LHC vs FCC-hh: Total Yield & Energy at 5mm from IP and through TAS

|                                                | HL-LHC | FCC-hh |
|------------------------------------------------|--------|--------|
| <n<sub>tot&gt; at IP</n<sub>                   | 120    | 181    |
| N at 5mm⁺                                      | 151    | 228    |
| N <sub>tot</sub> at L <sub>non-IP</sub> *      | 5.9    | 7.72   |
| E at 5mm (TeV) *                               | 13.28  | 94.75  |
| E <sub>tot</sub> at L <sub>non-IP</sub> (TeV)* | 5.53   | 42.45  |


- + Hyperons not included
- \* Thru TAS on each side of IP

FCC Week, Washington, DC, March 23-27, 2015

## HL-LHC vs FCC-hh: Particle Yields at 5mm from IP and through TAS

#### 14-TeV pp HL-LHC

#### 



<u>P</u> 10<sup>2</sup> -

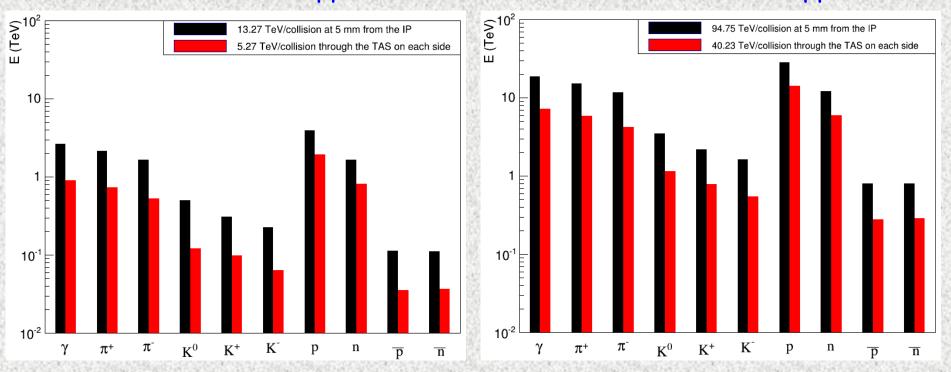
10

1

10<sup>-1</sup>

100-TeV pp FCC-hh

р


n

p

n

### HL-LHC vs FCC-hh: Energy Flux at 5mm from IP and through TAS

#### 14-TeV pp HL-LHC



100-TeV pp FCC-hh

# Dynamic Heat Loads on Each Side of IP (kW)

|                                               | HL-LHC | FCC-hh |
|-----------------------------------------------|--------|--------|
| <sup>1</sup> / <sub>2</sub> Detector w/shield | 0.385  | 0.77   |
| TAS                                           | 0.615  | 5.75   |
| Collider                                      | 3.76*  | 36.68  |
| Total                                         | 4.76   | 43.20  |

\* IT(cold mass)+IT(W/screen)+rest = 0.63 + 0.61 + 2.52 = 3.76 kW

# Summary

- **IP collision debris**: dominant at multi-TeV pp colliders; hard to deal with but manageable up to HL-LHC. Challenging at FCC-hh - especially in its Phase II - for inner triplet, neutral beam dump and beyond. The FCC-hh inner triplet based on large-aperture cos-theta Nb<sub>3</sub>Sn quads with a room for thick tungsten inserts is a solution with R&D on rad-hard insulation! 20-T HTS schemes also deserve consideration for IT quads
- Machine-induced backgrounds: manageable for multi-TeV proton beams with appropriate multi-component collimation systems far from IP and in the IP vicinity
- Full simulations for FCC-hh are needed in iterations with detector, IR lattice and magnet designers

FCC Week, Washington, DC, March 23-27, 2015