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Outline

1 Introduction:
o  Radiation sources

1 Validation studies at the LHC:
o Comparison between simulation results and BLM measurements

1 First results on expectations at the FCC:
o  Collision debris particles
impact on the inner triplet: ruling factors and solution strategies

o  Beam-gasinteraction
impact on the arc cell

1 Next steps:
o  Radiation in the cavern

levels at the inner detectors
shielding to protect from the machine background

o Beam intercepting devices
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Radiation sources

Collision debris particles

o energy deposition in the superconducting magnet
coils of the insertion region

100 TeV p-p collisions @ L = 5103* cm2 5% 45 kW
towards each (L&R) side

L =2103cm2 s 175 kW towards each (L&R) side
o back-scattering induced background on detectors

beam-beam collisions

Beam impact on intercepting devices

o  load on devices
o  essential to evaluate the impact of the shower, developed
from the collimation system, on the downstream elements

o impact on detectors of the tertiary beam halo generated in
the collimation system

Beam interaction with residual gas (or unexpected obstacles)

o  important with respect to vacuum/intensity limits

FCC: the copious flux of synchrotron radiation photons will also generate a not negligible
amount of gas

0 load on detectors from “cIose-b"’ beam ﬁas interactions
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FLUKA validation: collision debris

p-p collisions at 7 TeV centre-of-mass energy
@CMS
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FLUKA validation: collision debris

p-p collisions at 7 TeV centre-of-mass energy
@CMS
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FLUKA validation: collision debris
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FLUKA validation: Losses Induced by Wire Scanner

Wire Scanner test, performed on 2010 Nov 1, on the left of P4 at 3.5TeV
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FLUKA validation: Losses Induced by Wire Scanner

Controlled benchmarking
conditions

Comparison between
measured and simulated
BLM pattern: agreement
within 30%

~33mto
Time-integrated dose in BLMs

Experiment vs FLUKA (v, =25 cm/sec):
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Collision debris particles

Which particles in the collision debris? Mainly photons, pions, protons and neutrons

Charged particles FCC-hh: 100 TeV proton-proton collisions
. . . [ . 1 R S B B
are captured by Collision debris particles spfectra |n'the in &A — protons
the triplet vacuum chamber along the inner triplet ~ 08| ing2p -
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Neutral particles 0.6 L ﬁf'{ ,,,,,,,,,,,,,,, L 0.2 2
basically don'thit |5 41 I ; FA Yoo - EE— ' : =
the triplet, S o2 7 T ﬂi\ 77777777777777777777777 S 06
because of the g .0 = . E positive pions S
shadow effectof |2 Heutrons o 04 G lost in Q.i 1 ;
the TAS. w 02F Bl 2 el ; ‘
g gr""!‘un w 0.2
o o | ° i
L H! %
T A
]
_w‘fr il 0.6
0 = . ' E" 0.4
1 GeV 10 GeV 100 GeV 1TeV 10TeV 100 TeV
Energy
] 0.2
0 R 15 N
1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 100 TeV
Energy deposition in the inner triplet mainly due
inQ1 inQ2A inQ2B inQ3 outQ3 - to charged pions, which develop EM showers
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Energy deposition ruling factors

LHC

triplet peak energy deposition on inner coil

The energy deposition is influenced

by different factors: 3 .
) TAS presence 25
1 value of the crossing angle

:
01 crossing plane with respect to the %
triplet configuration 1

o  for FDDF triplet configuration in TAS—
the h-plane, vertical crossing is
more challenging than

IRS mnner dipole OFF, 203
IR8 inner dipoles O

7.0 TeV proton 1@) L=|pe33 em st
ads, 1425 urad ——
20 Tm quad, 335 urad —+
IR1, 142.5 pead ——

crossing
angle

horizontal one
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Distance from IP (m)

1 shielding (magnets and
interconnects)
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and length, and L*
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cryogenic load: the TAS absence
redoubles (+130%) the Q1 load

TAS Q1
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Case study:
-l 100TeV proton collisions

non-elastic cross section of

108 mbarn, L=5x 103*cm=2s?

and L, =3000fb?

1 vertical crossing, 70 prad half
crossing angle
- L*=36m, 110 mlong triplet
including TAS
-l quadrupole gradients: 189 T/
m (O 2) — 220 T/m (Ql) R. Tomas and R. Martin

5 mm shielding

EI

4 : : ;

S R [ SR T 100 mm
| 82 mm ;
S 20 mm' |beam pipe | é pertu re
Y - TAS---:-- aperture-? »»»»»»»»»
aperture ]_
a 2000 4000 GBBBZ [CHB]OBB 186080
26/03/15

preliminary layout

/orbit corrector

Q3 -y
20 m magnetic length)

Q2a and Q2b e
(17.5 m magnetic length each) -

(20 m magnetic length)

TAS
coil aperture: 200 mm

O

92 mm beam pipe aperture without
shielding

1 TAS aperture of 20 mm

simplified hypothesis for the shielding

continuous shielding of INERMET (tungsten)

in both the magnets and the interconnects
5/10/15/20 mm thick shielding
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- Total power: Length [m] 3 2053 16 1803 18.03 2053 16
o noshielding

Power [kW] 6.967 1.6 0.46 0.84 2.0 1.9 0.59

| Peak power density: Moverestimated, since no beam pipe has been modeled before TAS

o without shielding:
peak power density almost

peak power profile on the inner coil layer, @ 5 x 103 cm?2 5™

two orders of magnitude oY E
higher than for LHC i % ]
. . 400 | no shielding —oe— 1
one order of magnitude higher ; ! 5mm shielding +—a— ]
than considered quench limit 350 ; 15mm sﬂgelg;ng . ]
] ] i mm shielding = ]
o  effect of the shielding: o a0 | i ]
even with only 5 mm of z : ]
shielding, the peak power E 20r 3 L
density isreduced by aboutan & [ 5 :
order of magnitude and it is g 20r ]
<30 MWcm?3 g ol ¢
«  estimated Nb3Sn quench :
limit: 40 mMWcm3 100 |
50 |
0 L

40 60 80 100 120 140
distance from IP [m]
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) Total power: Length [m] 3 2053 16 1803 1803 2053 16

o noshielding Power [kW]  6.96 1.6 0.46 0.84

2.0

1.9 0.59

Moverestimated, since no beam pipe has been modeled before TAS

1 Peak power density:

o 15 mm thick shielding: peak power density <g mWcm=3

o  target of ultimate instantaneous luminosity (2 1035 cm2s?) seems to be on reach

peak power profile on the inner coil layer, @ 5 x 10% cm?2 s
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Peak dose

- Without shielding:
o  peakdose is almost two orders of magnitude higher than for LHC

o two orders of magnitude higher than the acceptable dose (30 MGy)
peak dose profile, per 3000 fo!

ST 3500 : : : : :
- Effect of the shielding: L ' ' ' ' '
o even with only 5 mm of [
3000 - ]
shielding, the peak dose [ 5mm 22:2:3:28 -
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Peak dose

- Without shielding:
o  peakdose is almost two orders of magnitude higher than for LHC
o two orders of magnitude higher than the acceptable dose (30 MGy)

o thetarget of 30,000 fb* 100 |
integrated luminosity still

implies other strategies. 50 F §

NPT kd file, per 3000 o™
1 Effect of the shielding: 550 poatt dose protte, bt
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peak dose profile, per 3000 fb'1, 15 mm thick shielding

1 Second layout with L* of 61.5 m: T eak dose reduced by 3o% .
§ total power on the cold mass e o
. uIm 36 e Effect f reduced) e
crossing plane vertical  vertical " ]
half crossing angle [prad] 70 85 0 - % | ]
coil aperture [mm] 100 140 v é .
maximum gradient [Tm™] 220 184 v § ]
TAS aperture [mm] 20 35 & b
Q1/Q3 length [m] 20.0 20.54 ]
Q2 length [m] 17.5 17.58 _
corrector length [m] 1.5 3 | | |
R. Tomas and R. Martin 60 80 100 120 140 160 180

distance from IP [m]

1 Remark: these are two preliminary options

o workongoing in close collaboration with the optics team to define the best layout
for the triplet

o  theshielding has been considered as continuous:

optimistic approximation: the shielding in reality has some interruptions = this will
modeled in a more advanced phase 4
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1 Cell of 210 m: 12 dipoles and 2 quadrupoles

FCC: Beam Gas Interaction |

1 Composite and asymmetric beam
screen design:

Beam Screen

R. Kersevan

LHC-like concept with
a continuous slot to
catch at a larger
distance the primary
synchrotron radiation
photons

“external” absorber

E. Todesco

4 Magnets:

o 14.2mlongdipoles
with a field of 15.8T

o  6.3mlong
quadrupoles with a
40 80 20 0 0 10 20 30 40 gradient 0f362Tm_1

x [em]

R. Alemany Fernandez, B. Holzer

] Gas considered for the simulation:
H2, 1205 m=3
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1.4

FCC: Beam Gas Interaction I

power normalization 0.5 A beam current

1 16 dose normalization: one year (1075s)

Bl B2 B3 B4 B5 B6
12, -
| _ 1 4 Dipole coils
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z[m]
Magnets(") Total power [W]
0.001
Cold mass Beam Screen -
Quadrupole 1.1 0.15 _ ,
P ) the magnets with the higher load
Dipole 3.4 0.3 are shown in the table
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Detector Protection: Shielding in the Cavern

Simulation of energy deposit in the beam-pipe, the detector and cavernin
general are a key ingredient for the detector layout:

o  shielding design to protect the detector from particles coming from the TAS
and the triplet ;

R(cm)

Simulation done for the ATLAS = : Iy Foreerd mon
detector construction = design of a = i 7]
shielding around the TAS e

TP43 . neutron fluence (kHz/cm?) E

1200

1000

800

Collaboration already
started to produce similar
results for the FCC
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"

0O 250 500 750 1000 1250 1500 1750 2000 2250 Oom"ﬂ
Z(cm)

26/03/15 M.1. Besana, FCC-Week, Washington 14



Beam intercepting devices

-l Load on protection devices during halo L5y 10
HL-LHC (7 TeV)

cleaning, dump and mis-injection ... L 10!

1 Shower to close-by machine element

1 Impact of the leakage to the cold section

o Anton Lechner’s talk today:

(kJ/g)

. . . - 15 _
http.//mq|co:cern.ch/event/2407oq/se55|on/ FCC (50 TeV) 10°
g5/contribution/s4 Iy 10!

¢¢¢¢¢
\\\\\\\
\\\\\

Figures: Energy density in 3 m-long Graphite (1.83 g/cm3 ) for
one nominal proton bunch (o =400pm), comparing HL-LHC
(top) and FCC (bottom).
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Conclusions

1 The study activity is based on several years work and on the robust
experience acquired during LHC Run |

1 Working framework is on place and the first results are encouraging

1 Fruitful collaboration with other teams is ongoing

Thanks for your attention!
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Complex particle cascade

1 Very high energy hadron interactions B 4
initiate a long and complex particle cascade
down to low energy nuclear processes. N\VZA
///glfo'\fi\'\
. . . . . // //l \\\
1 Its description requires as essential pieces
of information: e o el e
o  reaction cross sections; T

o  exclusive fragment production;

o nuclide structure and decay data;

o evaluated quantities of neutron induced
reactions

1 Monte Carlo simulation is an effective way
to calculate macroscopic quantities (like
energy deposition, DPA, particle fluence,
activation and residual dose rate) with an
accuracy reflecting the quality of the critical
processes implementation
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Why Monte Carlo simulations?

Machine protection issues: operational/accidental load and Monitors:
long term damage -

Sensitive equipment:

The
15-m long
" LHC cryodipole

Intercepting devices:

Beam dump Collimators

Experiments protection issues:

o Machine induced background (tertiary " -
beam halo generated in the collimation Ener.gy dep05|t|on. studies play a key
system) role in the whole life of an accelerator:
o Design;
Radiation protection issues: o  Commissioning / operation /

o Radiation to environment (prompt);
o Activation [ residual dose rates (decay).

intervention;
o Upgrade /disposal.

26/03/15
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Validation: power load on collimators

| \ | | N 1 N 1 N
\ BLM Measurement R‘SQi(kQuench te%, 4 TeV) =~|._beam 2
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Crossing Plane

7 TeV collisions, 120 mm coil aperture, 225 prad half crossing angle
6.0 — — T T T T

0 vertical crossing recommended

g 5.0 45‘.' crossing plane 4 limit for power
= horizontal crossing ——— 15 density in coils to
'% 4.0 Q2a Q2b Q3 1 prevent magnet
= 10 qguench (steady
g state):

T 20 4 43mwem3

2,

% 1.0 |

Q" o.o L 1 1 1

20.0 30.0 40.0 50.0 60.0 70.0

Distance from IP [m]
1 Thevertical crossing is the most challenging case

o FDDF quadrupoles in the horizontal plane
o DFFD quadrupoles in the vertical plane

1 Difference: about a factor 2

o theeffectis mitigated by the presence of the
shielding in Q1
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Length of the inner triplet

Parametric study:

1 inner triplet total
length, gradient and
aperture have been
changed coherently

Total length Gradient Aperture

(m) (T/m) (mm)
36.2 156 90
40.7 125 115
43.6 112 130
45.7 104 140

idea and numbers by E. Todesco

1 energy deposition
evaluated for each
model

Peak power [mW/cm?]

225 urad half vertical crossing angle, 55 mm TAS aperture

50

—-90 mm

N
(=)

—— 115 mm

——130 mm

(oY)
(=)

—— 140 mm

[\
(=)

[a—
(=)

results and plots by E. Wildner

(=)

45 50 55 60 65 70

Distance to IP (m)

The longer the triplet, the better
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Inner Triplet Design: LHC and HL-LHC

peak dose longitudinal profile

1 Margin to quench: |
7+7 TeV proten interactions

o LHC design phase: peak power 0T HL-LHC at 3000 bech 103%8?;% -
density kept a factor of three below o
the expected quench limit

=30 r
&
peak energy deposition on triplet inner coil E‘
10 )
i Jn o L0t
- % =% L iy
7 :1-@1 . 7 g T
¥ * 3 o 3 F :
1k ; ==§ :ﬁf' B ;w&l ] 10 - f
s - : \g ] 5 . Wl e
. 0 ' ‘ ' ‘ '
o * H 3 o 1 20 30 40 50 60 70 80
¢ ; A-% w . M@ distance from IP [m]
SN \:
5 5 ; 1 Insulation damage:HL-LHC same
| ‘ . | | | energy as LHC, but luminosity will be
20 25 30 35 40 45 50 55 . .
2m increased by an order of magnitude.

o expected increase of the peak dose by
an order of magnitude

o BUT: careful design of the shielding
will enable to stay at the same peak
dose values as for the LHC
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FCC-ee synchrotron radiation
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24 cm absorber

Copper (2mm tube)
water cooling
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FCC-ee synchrotron radiation
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