Event rates & online issues FCC-ee WG10

First Annual FCC Meeting Washington, DC 24 March 2015 Christos Leonidopoulos & Emmanuel Perez

Mandate

"Work towards hardware & software solutions that will allow TLEP experiments to store interesting physics with high efficiency & redundancy (with minimum uncertainties or biases)"

Defining the problem: Rates & event sizes

Physics specs

- LO assumptions
 - ➤ Trigger input = trigger output = DAQ rate = interesting physics. In other words:
 - Signal efficiency ~ 100%
 - Background ~ not a major consideration (TBC)
 - > Rate of interesting physics:
 - Head-on scheme: \sim 15 kHz (Z events) + 60 kHz (Bhabha)
 - "Crab-waist" scheme: Rates in low-mass operating points (Z, W^+W^-) larger by a factor of ~10 to 3.5

(Vast gap in terminology between hadron and lepton collider people....)

What others do

- Lepton (and non-lepton) colliders' approach to trigger
 - > ILC: "trigger-less DAQ" (very small rates)
 - > LEP: calo- and tracker-based online selection
 - ➤ LHCb upgrade plans: collect ~everything (high-purity requirements on online selection)
 - ☐ Remember: LHCb already has
 - higher rate (x10)
 - but also: smaller event sizes (x10) compared to ATLAS, CMS

Relevant parameter: data throughput, not rate!

Capacity: data volume per unit time = (event size) × (interesting physics rate)

Rates, data output to disk

Experiment	Trigger rate (kHz)	Event size (MB)	Throughput to disk (GB/s)	Notes
ATLAS/CMS (2012)	1	1	1	Can do up to 2 GB/s (limited by storage)
ATLAS/CMS (Phase 2)	5	4	20	Pileup: 140
LHCb upgrade	10-20	0.1	1-2	
ILC/TESLA		0.2+5.0		Full train (1 ms) Largest size from bgd
FCC-ee (Z-pole)	150	???	???	Crab-waist

Event size at FCC-ee

- What is the event size?
 - Assumption that event size is fraction of LHC event size
 - Factor of 10? Less?
 - ➤ Need to evaluate potential impact of:
 - Synchrotron radiation, beamstralung, beam backgrounds
 - Detector design (granularity, noise/zero-suppression)
- We do not really know
 - ➤ Needs to be evaluated for different detector scenarios, beam profiles
 - ➤ Best guess: start from ILC detector designs

WG10 organisation: Working Units

Working Units & Synergies

Physics analyses requirements

- Evaluate the precision needed on the determination of trigger efficiencies
 - Absolute trigger efficiencies don't need to be known much better than the luminosity. Some analyses (e.g. asymmetries) may need a precise knowledge
 of relative (e.g. Forward vs Backward) efficiencies
- Methods for evaluation
 - What was d

Software tools

- Proto-algorithm de
 - ~100% effic
- Port to DD4Hep the geometry of ILD or SID

Beam and machine backgrounds

Description: beam-beam, synchrotron radiation, beam-gas, halo muons, etc

Rates and event sizes to be evaluated with fast/full simulation when tools are in place

Readout and general architecture

- Propose readout specifications: what is read out (e.g. hits, or clusters already made by the electronics), what is the number of bits per channel, amount of zero suppression
 - What assumptions have been made for zero suppression for ILC?
- From brainstorming to concrete projects
- With the help of software: turn into well-defined tasks (to be advertised to individuals and new groups)
 - Can we use an approach a la LHCb with the number of channels planned for the HCC-ee detector.

Beam & Machine backgrounds

Beam and machine backgrounds

Description: beam-beam, synchrotron radiation, beam-gas, halo muons, etc

- · Rates and event sizes to be evaluated with fast/full simulation when tools are in place
- Will require an implementation in DD4Hep / Geant of several beam-line elements (e.g. final quadrupoles which can be a source a backscatters for the beamstrahlung background, and which is needed to determine the synchrotron radiation background.
 - Interaction with Acc/MDI

Before DD4Hep/Geant tools are available:

- Determine multiplicities & spectra of pairs created within the detector acceptance using Guinea-Pig
- Attempt to scale projections from corresponding studies done for the ILC (cf ILC TDR and TESLA TDR) and get approximate occupancies / rates / event sizes
- · What existing simulation tools could we be using?

Los hades de la much hadesquiede : sourau the hadesquied induced sales ages of LLU and account and hadesquied in the hades aussel too the (i inc.)

Determination of beamstrahlung pair-production background

- Run Guinea-Pig (e^+e^- beam-beam simulation programme) with FCC-ee parameters (with Z-pole crab-waist scenario)
- Take GP output, pass through ILC software with ILD detector (full simulation)
- Evaluate particle flux through magnetic field and as function of radial distance from beam

Beam & Machine backgrounds

The larger the magnetic field, the

smaller the pair-production rate

FCC-ee Z-pole, crab-waist:

- 15x less pairs than ILC500
- And with 10x less energy

Pair production appears not to be

Event sizes in ILD scheme

< Nhits >	Pair bckgd (c.w.)	Ζ to μμ	Z to jj	Bhabha	ZH to jjbb at 350 GeV
VTX	90	15	160	7	350
TPC	< 0.06	90	1400	50	3000
Ecal	5	70	1400	20	9000
HcalBarrel	-		2000	5	0000
HcalEndcap	340	90	1000	15	9000
Muons	-	50	30	6	50
BeamCal				60	
LumiCal				800	
LHCal				75	
Approx size	2 - 4 kB	1.6 kB	30 kB	2.5 kB	110 kB

2/4/15 E.Perez

- hence, with a TPC, an "offset" of 30 kBytes to add to the raw data corresponding to any triggered event written to disk.

Hadronic pile-up

- a Zmumu event would be 30 kBytes

- a Bhabha event would be 30 kBytes.

See E. Perez's <u>talk</u> at TLEP9 workshop in Pisa

Event sizes in ILD scheme

- Pair-production does not seem to be an issue
 - > Small contribution to event size (unlike ILC)
- "Guesstimate" of ~100 kB seems to hold (hadronic events)
 - > Z-pole & crab-waist scheme: throughput similar to HL-LHC
- "Empty" events (e.g. Bhabha) may not be empty
 - Detectors with large readout times (e.g. TPC) incur pile-up
 - > But not a major issue either
- Several background sources still need to be considered
 - Fwd region of FCC-ee detector must be included in Simulation eonidopoulos, FCCee-WG10

Beam & Machine backgrounds

Beam and machine ba

Description: beam-beam, synch

- · Rates and event sizes to
- Will require an implement beamstrahlung backgrou
 - Interaction with Ac

Negligible event size in VTX detector (ILD)

with Mokka (Full Sim) for pair-production in FCC-ee

(few kBytes/evt), dominated by endcap calorimeter.

Before DD4Hep/Geant tools are available:

- · Determine multiplicities & spectra of pairs created within the detector acceptance using Guinea-Pig
- Attempt to scale projections from corresponding studies done for the ILC (cf ILC TDR and TESLA TDR) and get approximate occupancies / rates / event sizes
- What existing simulation tools could we be using?
- For beam-gas, halo muon backgrounds: review the background induced rates seen at LEP and see what can be scaled to the beam current for the (Giga-Z) FCC-ee operation
 - How were the LEP backgrounds predicted before starting operation?
- · Additional sources of potential background to be estimated:
 - Back-scattering of beamstrahlung photons and γγ --> hadrons (using Guinea-Pig)
 - Synchrotron radiation
 - o beam halo, beam gas
 - · background from injection?

Additional source of potential background to be evaluated in collaboration with Experiments-Machine interface group

Software

Software tools

- Port to DD4Hep the geometry of ILD or SID
 - in collaboration with Offline software
- Develop some software that converts the Geant Hits into an event size
 - · need ability to mix events, in case the background is not negligible
- · Framework development towards enabling parallelisation of HLT algorithms (e.g. GaudiHive, CUDA or such)
 - Parallelisation, vectorization

- Implementation of additional detector geometries (e.g. SID), SimHits and tool for conversion into event sizes
- In collaboration with software group

The Next Steps

- Detector mini-workshop at beginning of May (TBC)
- Potential topics/presentations to include
 - ➤ Beamstrahlung photons rates, backscattering from interactions in forward region, dependence on distance of LumiCal from IP
 - ➤ Simulation of synchrotron radiation
 - Software-only trigger for LHCb upgrade
 - ➤ DD4Hep tutorial? SimHits generation?

Summary

- FCC-ee WG10 is making slow but steady progress
 - From brainstorming, to concrete tasks, to prototypes & proposed solutions
 - First studies on beam backgrounds presented at Pisa
 - Next steps: beef up effort on software tools, define deliverables
 - ➤ Discussion to continue at detector mini-workshop

Epilogue

"The trigger for FCC-ee? I don't want a version. I want a vision."

Backup

Physics analyses requirements

Physics analyses requirements

- Evaluate the precision needed on the determination of trigger efficiencies
 - Absolute trigger efficiencies don't need to be known much better than the luminosity. Some analyses (e.g. asymmetries) may need a precise knowledge
 of relative (e.g. Forward vs Backward) efficiencies
- · Methods for evaluating and minimising trigger efficiencies (e.g. tag-n-probe, algorithm redundancy, etc)
 - What was done for LEP?
- · Proto-algorithm development
 - ~100% efficiency, redundancy, minimise biases & algorithmic asymmetries
 - A lot will depend on levels of background and if any (real) rejection is needed

Software technologies

- Begin with GPU or many-core development of physicsobject reconstruction algorithms
 - Exact underlying technology (e.g. GPU vs Many-Core, OpenCL vs nVidia's CUDA, FPGAs' C-like code) is not important to know
 - ➤ Main challenge: develop parallelizable algorithms that can then "easily" get ported to another architecture if needed
 - FCC software and P(lain) O(ld) D(ata): simplicity and parallelism (promised to be) built in
 - ➤ Need software experts that work very closely with detector and reconstruction experts

WG10 prerequisites

- Physics studies: one can start from MC-truth particles, apply some smearing and carry out a feasibility study and/or expected measurement precision
- Experimental environment: need detector hits so we can evaluate event sizes, and put together reconstruction algorithms, study inefficiencies, latencies, biases, etc
 - ➤ WG10 prerequisite: simulation of detector hits (collaboration with WG9)

Readout & general architecture

Readout and general architecture

- Propose readout specifications: what is read out (e.g. hits, or clusters already made by the electronics), what is the number of bits per channel, amount of zero suppression
 - What assumptions have been made for zero suppression for ILC?
 - Reduction of data beyond zero-suppression: e.g. some clustering could be done on the chips see ideas in the context of the HL-LHC pixel detectors.
 - Connection to software task #2
 - · Interactions with detector group for determining number of bits
- Study the evolution of event size w.r.t. detector granularity and beam conditions
 - For an ILC-like detector the size is ~ 200 kB for a multijet event without any background (TESLA TDR); adding all background sources relevant to the ILC, this increases to several MB's.
- Scenarios: purely software trigger or have a hardware L1 that limits the readout rate and the event building rate?
 - Summarise pros and cons of both options
 - Purely software trigger: solution chosen by ILC and LHCb, although for different reasons
 - Can that be chosen for TLEP as well? what are the constraints set by such a scheme in a collider mode environment with BX = 20 ns?
 - What are the constraints that a purely software trigger would put on the design of the detector? e.g. readout of the tracker (input from LHCb?)
 Impact of Time Projection Chamber choice on crab-waist operation at Z-pole?
 - Can we use an approach a la LHCb with the number of channels planned for the FCC-ee detector?

Level-1 or HLT?

• ILC assumes DAQ with "trigger-less" design

- Main question for TLEP
 - ➤ Hardware-based (aka: Level-1) or software-based (aka: C++/HLT) trigger?
 - Examples of technologies involved:
 - Level-1: FPGAs
 - HLT: GPU or Many-Core

Level-1 or HLT?

- Why not stick to software/C++ and keep things simple?
- Detector choices can have an impact on trigger/DAQ, eg:
 - ➤ Tracking: a Time Projection Chamber (TPC) that cannot be read out every 20 ns (not a favorable option with crab-waist rates)
 - Calorimetry: with a fine-granularity & noisy calorimeter one may not be able to apply zero suppression at the trigger