*SBT

SBT | SCIB | SPINTEC | SPRAM | SPSMS | SP2M

inac.cea.fr

Study of a magnetic refrigeration stage

Francois Millet – March 2015

- ✓ Motivations
- ✓ Magnetic refrigeration principles
- ✓ Review of the state-of-the-art
- ✓ Preliminary design study
- ✓ Conclusions

FCC Cryogenic Requirements

E.Palmieri / INFN

Superfluid Helium cooling for:

- ☐ <u>High-field superconducting magnets</u> of FCC-hh (10 kW range at 1.8 K)
- High-gradient superconducting RF cavities of FCC-ee (5 kW range down to 1.6 K)

~1.2 m

L. Tavian / CERN

Superfluid Helium Refrigeration

Existing large Hell refrigeration use **cold compressor in series**

- □ Complex control strategy
- ☐ Long downtime after stops
- ☐ Limited Carnot efficiency < 20 %

Generic scheme of < 2 K refrigeration cycles

L.Tavian/ CERN

Cea Cea

Magnetic Refrigeration Option

■ More reliable ?

Cold compressors could be totally or partially replaced by a Magnetic Refrigeration stage

□ More efficient ?

High Carnot efficiency (> 50%) already measured at low cooling capacity for Magnetic Refrigeration stage between 1.8 K and 4.2 K

Ces

- √ Motivations
- ✓ Magnetic refrigeration principles
- √ Review of the state-of-the-art
- ✓ Preliminary design Study
- √ Conclusions

Magnetic Refrigeration principles

Magnetic Refrigeration or Adiabatic Demagnetization Refrigeration (ADR) is a <u>cyclic cooling system</u> which alternates between two states:

- Operating state: Cool-down and heat removal from the cold source (Q_c)
- 2. Recycling state: Warm-up and heat rejection to the warm source (Q_w)

Magneto Caloric Effect

Magnetic refrigeration is based on the **Magneto-Caloric**

Effect (MCE) (reversible variation of internal energy when

applied magnetic field in a suitable material)

Apply magnetic field spins align

temperature increases

The cooling technology was first demonstrated experimentally in 1933 by William F. Giauque & D.P. MacDougall (< 1 K)

- √ Motivations
- ✓ Magnetic refrigeration principles
- ✓ Review of the state-of-the-art
- ✓ Preliminary design Study
- √ Conclusions

Worldwide works in magnetic refrigeration

- ☐ Sub-kelvin application (space detectors & laboratory cooling)

 Efficient & reliable products (space-qualified)
- □ 1 to 4.5 K cooling (LTS magnets & space detectors)
 Laboratory prototypes with achieved high efficiency
- □ 20-77 K range (Hydrogen liquefaction)On-going R&D
- ☐ Room temperature applicationOn-going R&D

Space-qualified 50 mK cooler (CEA/SBT)

CEA works

Reciprocating magnetic refrigeration between 1.8 K and 4.2 K

(A.Lacaze & al., Double acting reciprocating magnetic refrigerator: recent improvements, 1984)

Cold source	1.8 K	2.1 K
Useful power Qc	1.35 W	2.2 W
FOM	53%	79,3%
Frequency	0.8 Hz	0.6 Hz
Magnetic field	4 T (stationary)	
Magnetic material	GGG (moving) 0.1 kg	
Heat transfer	Alternatively in Hel & Pressurised Hell	
Warm source	4.2	K

=> Carnot efficiency > 50 %

Hitachi works

Magnetic refrigeration between 1.8 K and 4.2 K

(Y.Hakuraku & al., Thermodynamic analysis of a magnetic refrigerator with static heat switches, 1986) (Y.Hakuraku & al., A Rotary Magnetic Refrigerator for Superfluid Helium Production, 1986)

Drive shaft

A.2K liquid helium bath

Main magnet

Sub, magnet

(He II)

Magnetic elements
(GGG)

Compensating magnet

FIG. 1. Rotary-magnetic refrigerator for superfluid helium production.

	Static design /	Rotating design
Cold source	1.8 K	1.8 K
Useful power	1.5 W	1.8 W
FOM	20%	34%
Frequency	0.2 Hz	0.4 Hz
Magnetic field	3 T (pulsed)	3 T (station.)
Mag. material	GGG (static)	GGG (rota.) 1.1 kg
Heat transfer	Permanent in Hel & Hell	Alternatively in Hell
Warm source	4.2 K	4.2 K

Static design / Potating design

=> Innovative solutions for heat transfer

Hakuraku / Hitachi

CERN works

Magnetic Refrigeration between 1.8 K and 4.2 K

(A.Bezaguet & al., Design and construction of a static magnetic refrigeration between 1.8 K and 4.5 K, 1994)

Figure 1	Schematic diagram of the static
magnetic refrigerator	

M.Schmidt / CERN

Cold source	1.8 K
Useful power	10 W (first tests)
FOM	~10% (estimate)
Frequency	0.2 to 1 Hz
Magnetic field	3,5 T (pulsed)
Magnetic material	GGG (static) 10 kg
Heat transfer	Alternatively He I or He II flow circulation
Warm source	4.2 K

Works performed during the LHC preparatory phase but stopped just after first tests!

Tandem Magnetic Regenerative Refrigeration between 1.8K-4.2K

(S.Jeong & al., Experimental investigation of the regenerative magnetic refrigerator for 1.8 K, 1994)

Cold source	1.8 K
Useful power	19 mW
FOM	~10% (estimate)
Frequency	0.07 Hz
Magnetic field	2.8 T <i>(pulsed)</i>
Magnetic material	GGG (static) 0.135 kg
Heat transfer	Oscillating He ³ (60 mbar)
Warm source	4.2 K

Fig. 1. Schematic diagram of the tandem regenerative magnetic refrigerator.

S.Jeong / MIT

=> Tandem operation with He³ oscillating flow

- √ Motivations
- ✓ Magnetic refrigeration principles
- ✓ Review of the state-of-the-art
- ✓ Preliminary Design Study
- √ Conclusions

Perspectives from the state-of-the-art

- Favorable operating temperature range
 - < 5 K with high efficiency MCE</p>
- ☐ High achieved efficiency
 - > 50% at 1.8 K
- □ Various design options
 - stationnary or pulsed magnet field,
 - conduction or convection heat transfer

=> Need to select a design option and to scale up towards 1 to 10 kW at 1.8 K or 5 kW down to 1.6 K

Strong CEA experience in magnetic refrigeration at subkelvin temperature for space cooling (heat switch, heat transfer, paramagnetic material development)

Space-qualified 50 mK cooler

Key parameters selection

Objectives FCC-ee: up to 5 kW down to 1.6 K

Magnetic Material?

Selection of GGG for first iteration Gadolinium Gallium Garnet Gd₃Ga₅O₁₂

Thermodynamic cycle & Magnetic Field?

Selection of Magnetic Carnot cycle 4 T at 4.5 K or 2 T at 2.1 K Up to 55 dm³ per kW at 1.6 K / 0,1 Hz

Heat exchange ?

Helium flow circulation

Preliminary design

First iteration on design and simulations

Adiabatic Magnetization & Demagnetization

FlowMagnetization &
Demagnetization

Cold source	1.6 K
Useful power	Objectives : up to 5 kW
FOM	Objectives : > 50%
Frequency	0.1 Hz
Magnetic field	4 T
Magnetic material	GGG
Heat transfer	Oscillating He
Warm source	4.2 K

Work started in the framework of FCC collaboration

- √ Motivations
- ✓ Magnetic refrigeration principles
- ✓ Review of the state-of-the-art
- ✓ Preliminary design Study
- ✓ Conclusions

RELA MODERNI À L'ADOURNA CESA

Conclusions

- □ Large superfluid helium refrigeration capacity is required for the FCC project
 - 10 kW range at 1.8 K for FCC-hh & 5 kW-range down to 1.6 K for FCC-ee
- Magnetic refrigeration as alternative option to conventional gas cycles in terms of efficiency and reliability
 - no or few cold compressors for helium bath pumping
 - > 50% Carnot efficiency expected according to prototypes results
- □ Key parameters for a magnetic refrigeration stage have been selected and a preliminary design is on-going
 - Challenging design study started at CEA in 2015

Thanks you for your attention

Any question?

